-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathlinearRegression.R
68 lines (47 loc) · 2.13 KB
/
linearRegression.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
library(data.table)
library(tidyverse)
library(dplyr)
library(reshape)
library(reshape2)
library(matrixStats)
library(ggpubr)
library(lme4)
library(broom)
# ..LINEAR REGRESSION ----------------------------------------------------------------------------------
# PFS vs expression
# PFS = response variable
# expression = dependent variable
# To predict response with expression data
# to perform ULR for every group individually
fits <- lmList(PFS ~ pdx_FPKM | gene, data=pdx_sensitive)
# summary(fits$AACSP1)
# summary(fits$AARS)
# summary(fits$AARS2)
# # function definition
# lmStats <- function(x) {
# # getting stats into a dataframe
# df.res <- data.frame(gene = names(fits)[x])
#
# df1 <- tidy(summary(fits[[x]])) # coefficients and p vals
# df2 <- glance(summary(fits[[x]]))[1:2] # r.squared and adjusted r.squared
#
# df.res <- cbind(df.res, df1, df2)
#
# return(df.res)
# }
# to extract regression stats from model fits
final <- data.frame()
for(x in 1:length(unique(pdx_sensitive$gene))) {
df.res <- data.frame(gene = names(fits)[x])
df1 <- tidy(summary(fits[[x]])) # coefficients and p vals
df2 <- glance(summary(fits[[x]]))[1:2] # r.squared and adjusted r.squared
df.res <- cbind(df.res, df1, df2)
final <- rbind(final, df.res)
}
#write.table(final, file = paste0(Sys.Date(),'_linearRegression_PFS_expression_invivo_sensitive_DEgenes.txt'), col.names = T, row.names = F, sep = '\t', quote = F)
# filtering for genes with p.val =< 0.025 and adjusted r2 >= 0.8 (less stringent)
final_filter_ls <- final[(final$p.value <= 0.025 & final$adj.r.squared >= 0.8),]
write.table(final_filter_ls, file = paste0(Sys.Date(),'_linearRegression_PFS_expression_invivo_sensitive_DEgenes_filter_less_stringent.txt'), col.names = T, row.names = F, sep = '\t', quote = F)
# filtering for genes with p.val =< 0.025 and adjusted r2 >= 0.9 (more stringent)
final_filter_ms <- final[(final$p.value <= 0.025 & final$adj.r.squared >= 0.9),]
write.table(final_filter_ms, file = paste0(Sys.Date(),'_linearRegression_PFS_expression_invivo_sensitive_DEgenes_filter_more_stringent.txt'), col.names = T, row.names = F, sep = '\t', quote = F)