-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsift.lua
251 lines (204 loc) · 7.83 KB
/
sift.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
local function csize(x,k,s)
local o = math.floor((x-k)/s+1)
local xi = (o-1)*s+k
return xi,o
end
-- patch_size is the region over which the SIFT feature is computed
-- grid_spacing is the step size between each patch
-- num_bins is the
local function sift_sampler(io,patch_size,grid_spacing,num_bins)
local num_angles = io:size(1)
local binstep = math.floor(patch_size/num_bins)
local nr,nor = csize(io:size(2),patch_size,grid_spacing)
local nc,noc = csize(io:size(3),patch_size,grid_spacing)
local shiftr = 1+math.floor((io:size(2)-nr)/2)
local shiftc = 1+math.floor((io:size(3)-nc)/2)
local nio = io:narrow(2,shiftr,nr):narrow(3,shiftc,nc)
local uio = nio:unfold(2,patch_size,grid_spacing):unfold(3,patch_size,grid_spacing)
local sift = torch.Tensor(num_bins*num_bins*num_angles,nor,noc)
local b = 1
for i=1,num_bins do
for j=1,num_bins do
sift:narrow(1,b,num_angles):copy(uio:select(5,(i-1)*binstep+1):select(4,(j-1)*binstep+1))
b = b + num_angles
end
end
return sift
end
local function sift_normalize(sift)
error('not yet implemented')
end
local function sift_normalize_dense(sift)
local ct = .1;
torch.add(sift,sift,ct)
local tmp = torch.cmul(sift,sift)
local tmp2 = torch.sum(tmp,1)
torch.sqrt(tmp2,tmp2)
-- print(tmp2[{ 1 , {1,10} , {1,10} }])
local rtmp2 = torch.Tensor(tmp2:storage(),tmp2:storageOffset(),
sift:size(1),0,tmp2:size(2),tmp2:stride(2),tmp2:size(3),tmp2:stride(3))
-- print(rtmp2:size())
torch.cdiv(sift,sift,rtmp2)
return sift
end
-- SIFT feature extractor as implemented in Svetlana Lazebnik's
-- Pyramid code.
function fex.dsift(im, params)
local t = torch.tic()
params = params or {}
local patch_size = params.patch_size or 16
local grid_spacing = params.grid_spacing or 8
local num_angles = 8
local num_bins = 4
local num_samples = num_bins * num_bins
local alpha = 9
local sigma_edge = 1
local angle_step = 2 * math.pi / num_angles
local angles = torch.range(0,2*math.pi,angle_step)
angles = angles:narrow(1,1,num_angles)
local I
if im:dim() == 3 then
I = torch.Tensor(im:size(2),im:size(3))
torch.add(I,im[1],im[2])
I:add(im[3])
I:div(3)
elseif im:dim() == 2 then
I = im
else
error('im has to be 2D or 3D')
end
I:div(I:max())
local hgt = I:size(1)
local wid = I:size(2)
local G_X,G_Y = fex.gendgauss(sigma_edge)
I = fex.padarray(I,{2,2},'mirror')
I:add(-I:mean())
local I_X = fex.xcorr2(I, G_X, 'S')
local I_Y = fex.xcorr2(I, G_Y, 'S')
I_X = I_X:narrow(1,3,hgt):narrow(2,3,wid):clone()
I_Y = I_Y:narrow(1,3,hgt):narrow(2,3,wid):clone()
if fex.verbose then print('1',torch.toc(t)) end
local I_theta = torch.atan2(I_Y,I_X)
I_theta[torch.ne(I_theta,I_theta)]=0
I_X:cmul(I_X)
I_Y:cmul(I_Y)
I_X:add(I_Y)
local I_mag = I_X:sqrt()
--local I_mag = torch.sqrt(torch.pow(I_X,2) + torch.pow(I_Y,2))
local grid_x = torch.range(patch_size/2,wid-patch_size/2+1,grid_spacing)
local grid_y = torch.range(patch_size/2,hgt-patch_size/2+1,grid_spacing)
if fex.verbose then print('2',torch.toc(t)) end
local I_orientation = torch.Tensor(num_angles, hgt, wid)
local cosI = torch.cos(I_theta)
local sinI = torch.sin(I_theta)
if fex.verbose then print('3',torch.toc(t)) end
local tmp = torch.Tensor(num_angles,hgt,wid)
for a=1,num_angles do
torch.mul(tmp[a],cosI,math.cos(angles[a]))
tmp[a]:add(math.sin(angles[a]),sinI)
end
tmp:pow(alpha)
tmp[torch.le(tmp,0)] = 0
local tt = torch.Tensor(I_mag:storage(),I_mag:storageOffset(),num_angles,0,hgt,I_mag:stride(1),wid,I_mag:stride(2))
torch.cmul(I_orientation,tmp,tt)
if fex.verbose then print('4',torch.toc(t)) end
local weight_kernel = torch.zeros(patch_size,patch_size)
local r = patch_size/2;
local cx = r-0.5;
local sample_res = patch_size/num_bins;
local weight_x = torch.abs(torch.range(1,patch_size)-cx)/sample_res
weight_x:apply(function(x) if x <= 1 then return 1-x else return 0 end end)
if fex.verbose then print('5',torch.toc(t)) end
local wx= torch.Tensor(weight_x):resize(weight_x:size(1),1)
local I_orientation2 = torch.Tensor():resizeAs(I_orientation)
for a=1,num_angles do
local t = fex.conv2(I_orientation[a],wx:t(),'S')
fex.conv2(I_orientation2[a],t,wx,'S')
end
if fex.verbose then print('6',torch.toc(t)) end
local sift=sift_sampler(I_orientation2,patch_size,grid_spacing,num_bins)
if fex.verbose then print('7',torch.toc(t)) end
sift = sift_normalize_dense(sift)
collectgarbage()
if fex.verbose then print('8',torch.toc(t)) end
return sift
end
-- SIFT feature extractor as implemented in Svetlana Lazebnik's
-- Pyramid code.
function fex.dsiftfast(im, params)
local t = torch.tic()
params = params or {}
local patch_size = params.patch_size or 16
local grid_spacing = params.grid_spacing or 8
local num_angles = 8
local num_bins = 4
local num_samples = num_bins * num_bins
local alpha = 9
local sigma_edge = 1
local angle_step = 2 * math.pi / num_angles
local angles = torch.range(0,2*math.pi,angle_step)
angles = angles:narrow(1,1,num_angles)
local I
if im:dim() == 3 then
I = torch.Tensor(im:size(2),im:size(3))
torch.add(I,im[1],im[2])
I:add(im[3])
I:div(3)
elseif im:dim() == 2 then
I = im
else
error('im has to be 2D or 3D')
end
I:div(I:max())
local hgt,wid = I:size(1),I:size(2)
local G_X,G_Y = fex.gendgauss(sigma_edge)
I:add(-I:mean())
if fex.verbose then print('0',torch.toc(t)) end
local I_X = torch.xcorr2(I, G_X)
local I_Y = torch.xcorr2(I, G_Y)
if fex.verbose then print('1',torch.toc(t)) end
local I_theta = torch.atan2(I_Y,I_X)
I_theta[torch.ne(I_theta,I_theta)]=0
I_X:cmul(I_X)
I_Y:cmul(I_Y)
I_X:add(I_Y)
local I_mag = I_X:sqrt()
hgt,wid = I_mag:size(1),I_mag:size(2)
if fex.verbose then print('2',torch.toc(t)) end
local I_orientation = torch.Tensor(num_angles, hgt, wid)
local cosI = torch.cos(I_theta)
local sinI = torch.sin(I_theta)
if fex.verbose then print('3',torch.toc(t)) end
local tmp = torch.Tensor(num_angles,hgt,wid)
for a=1,num_angles do
torch.mul(tmp[a],cosI,math.cos(angles[a]))
tmp[a]:add(math.sin(angles[a]),sinI)
end
tmp:pow(alpha)
tmp[torch.le(tmp,0)] = 0
local tt = torch.Tensor(I_mag:storage(),I_mag:storageOffset(),num_angles,0,hgt,I_mag:stride(1),wid,I_mag:stride(2))
torch.cmul(I_orientation,tmp,tt)
if fex.verbose then print('4',torch.toc(t)) end
local weight_kernel = torch.zeros(patch_size,patch_size)
local r = patch_size/2;
local cx = r-0.5;
local sample_res = patch_size/num_bins;
local weight_x = torch.abs(torch.range(1,patch_size)-cx)/sample_res
weight_x:apply(function(x) if x <= 1 then return 1-x else return 0 end end)
weight_x = torch.Tensor(weight_x):resize(weight_x:size(1),1)
if fex.verbose then print('5',torch.toc(t)) end
local I_orientation2 = torch.Tensor(num_angles, hgt-weight_x:size(1)+1, wid-weight_x:size(1)+1)
--local I_orientation2 = torch.Tensor():resizeAs(I_orientation)
local tim = torch.Tensor(num_angles, I_orientation2:size(2), wid)
for a=1,num_angles do
torch.conv2(tim[a],I_orientation[a],weight_x)
torch.conv2(I_orientation2[a],tim[a],weight_x:t())
end
if fex.verbose then print('6',torch.toc(t)) end
local sift=sift_sampler(I_orientation2,patch_size,grid_spacing,num_bins)
if fex.verbose then print('7',torch.toc(t)) end
sift = sift_normalize_dense(sift)
collectgarbage()
if fex.verbose then print('8',torch.toc(t)) end
return sift
end