-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimulations_logistic.jl
248 lines (191 loc) · 8.3 KB
/
simulations_logistic.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
using JLD
using MAT
using Dates
using Random
using TripletEmbeddings
Random.seed!(4)
# using MAT # Need to replace for CSV or JSON format
using ArgParse
# function parse_commandline()
# s = ArgParseSettings()
# @add_arg_table s begin
# "--data", "-d"
# help = "Path to data"
# arg_type = String
# required = true
# end
# return parse_args(s)
# end
function mock_args() # For debugging
args = Dict{String,Any}()
args["data"] = "./data/TaskA.csv"
return args
end
function logistic(x; σ=20)
return 1/(1 + exp(-σ*x))
end
function logistic_success_probabilities(data::Array{Float64}; σ=20)
n = size(data, 1)
D = TripletEmbeddings.distances(data, n)
probabilities = zeros(Float64, n, n, n)
for k = 1:n, j = 1:n, i = 1:n
probabilities[i,j,k] = logistic(abs(D[i,j] - D[i,k]); σ=σ)
end
return probabilities
end
function tSTE(args::Dict{String,Any}, data::Array{Float64,1}, experiment::Dict{Symbol,Any})
# tSTE parameter
params = Dict{Symbol,Real}()
α = [2,10] # Degrees of freedom of the t-Student
n = size(data,1)
# Initialize some variables
mse = zeros(Float64, length(experiment[:σ]), length(α), length(experiment[:fraction]), experiment[:repetitions])
violations = zeros(Float64, length(experiment[:σ]), length(α), length(experiment[:fraction]), experiment[:repetitions])
for i in eachindex(experiment[:σ])
# μ_ijk^a in the paper are the probabilities of successfully annotating
# triplets (i,j,k) by annotator a.
μ_ijk = logistic_success_probabilities(data; σ=experiment[:σ][i])
# Generate triplets
triplets = TripletEmbeddings.label(data, probability_success=μ_ijk)
for j in 1:length(α), k in 1:length(experiment[:fraction]), l in 1:experiment[:repetitions]
println("=========================")
println("tSTE")
println("α = $(α[j])")
println("fraction = $(experiment[:fraction][k]*100)%")
println("repetition = $l")
println("σ = $(experiment[:σ][i])")
println("=========================")
S = TripletEmbeddings.subset(triplets, experiment[:fraction][k]) # Random subset of triplets
params[:α] = α[j]
te = TripletEmbeddings.tSTE(S, experiment[:dimensions], params)
@time violations[i,j,k,l] = TripletEmbeddings.fit!(te; max_iter=experiment[:max_iter], verbose=false)
Y, mse[i,j,k,l] = TripletEmbeddings.scale(data, te; MSE=true)
end
end
save_data(args, "tSTE", experiment, mse, violations)
end
function STE(args::Dict{String,Any}, data::Array{Float64,1}, experiment::Dict{Symbol,Any})
# STE parameter
params = Dict{Symbol,Real}()
params[:σ] = 1/sqrt(2)
n = size(data, 1)
# Initialize some variables
mse = zeros(Float64, length(experiment[:σ]), length(experiment[:fraction]), experiment[:repetitions])
violations = zeros(Float64, length(experiment[:σ]), length(experiment[:fraction]), experiment[:repetitions])
for i in eachindex(experiment[:σ])
# μ_ijk^a in the paper are the probabilities of successfully annotating
# triplets (i,j,k) by annotator a.
μ_ijk = logistic_success_probabilities(data; σ=experiment[:σ][i])
# Generate triplets
triplets = TripletEmbeddings.label(data, probability_success=μ_ijk)
for k in 1:length(experiment[:fraction]), l in 1:experiment[:repetitions]
println("=========================")
println("STE")
println("fraction = $(experiment[:fraction][k]*100)%")
println("repetition = $l")
println("σ = $(experiment[:σ][i])")
println("=========================")
S = TripletEmbeddings.subset(triplets, experiment[:fraction][k]) # Random subset of triplets
te = TripletEmbeddings.STE(S, experiment[:dimensions], params)
@time violations[i,k,l] = TripletEmbeddings.fit!(te; max_iter=experiment[:max_iter], verbose=false)
Y, mse[i,k,l] = TripletEmbeddings.scale(data, te; MSE=true)
end
end
save_data(args, "STE", experiment, mse, violations)
end
function GNMDS(args::Dict{String,Any}, data::Array{Float64,1}, experiment::Dict{Symbol,Any})
n = size(data,1)
# Initialize some variables
mse = zeros(Float64, length(experiment[:σ]), length(experiment[:fraction]), experiment[:repetitions])
violations = zeros(Float64, length(experiment[:σ]), length(experiment[:fraction]), experiment[:repetitions])
for i in eachindex(experiment[:σ])
# μ_ijk^a in the paper are the probabilities of successfully annotating
# triplets (i,j,k) by annotator a.
μ_ijk = logistic_success_probabilities(data; σ=experiment[:σ][i])
# Generate triplets
triplets = TripletEmbeddings.label(data, probability_success=μ_ijk)
for k in 1:length(experiment[:fraction]), l in 1:experiment[:repetitions]
println("=========================")
println("GNMDS")
println("fraction = $(experiment[:fraction][k]*100)%")
println("repetition = $l")
println("σ = $(experiment[:σ][i])")
println("=========================")
S = TripletEmbeddings.subset(triplets, experiment[:fraction][k]) # Random subset of triplets
te = TripletEmbeddings.HingeGNMDS(S, experiment[:dimensions])
@time violations[i,k,l] = TripletEmbeddings.fit!(te; max_iter=experiment[:max_iter], verbose=false)
Y, mse[i,k,l] = TripletEmbeddings.scale(data, te; MSE=true)
end
end
save_data(args, "GNMDS", experiment, mse, violations)
end
function CKL(args::Dict{String,Any}, data::Array{Float64,1}, experiment::Dict{Symbol,Any})
# tSTE parameter
params = Dict{Symbol,Real}()
μ = [2,10] # Degrees of freedom of the t-Student
n = size(data,1)
# Initialize some variables
mse = zeros(Float64, length(experiment[:σ]), length(μ), length(experiment[:fraction]), experiment[:repetitions])
violations = zeros(Float64, length(experiment[:σ]), length(μ), length(experiment[:fraction]), experiment[:repetitions])
for i in eachindex(experiment[:σ])
# μ_ijk^a in the paper are the probabilities of successfully annotating
# triplets (i,j,k) by annotator a.
μ_ijk = logistic_success_probabilities(data; σ=experiment[:σ][i])
# Generate triplets
triplets = TripletEmbeddings.label(data, probability_success=μ_ijk)
for j in 1:length(μ), k in 1:length(experiment[:fraction]), l in 1:experiment[:repetitions]
println("=========================")
println("CKL")
println("μ = $(μ[j])")
println("fraction = $(experiment[:fraction][k]*100)%")
println("repetition = $l")
println("σ = $(experiment[:σ][i])")
println("=========================")
S = TripletEmbeddings.subset(triplets, experiment[:fraction][k]) # Random subset of triplets
params[:μ] = μ[j]
te = TripletEmbeddings.CKL(S, experiment[:dimensions], params)
@time violations[i,j,k,l] = TripletEmbeddings.fit!(te; max_iter=experiment[:max_iter], verbose=false)
Y, mse[i,j,k,l] = TripletEmbeddings.scale(data, te; MSE=true)
end
end
save_data(args, "CKL", experiment, mse, violations)
end
function save_data(args::Dict{String,Any}, kind::String, experiment::Dict{Symbol,Any}, mse::Array{Float64}, violations::Array{Float64})
# For figure generation/exploration
folder = string("results/simulations_logistic/", kind, "/")
try
mkdir(folder)
catch SystemError # Folder already exists
println("Folder ", folder, " already exists")
end
README = string("Grid search: fraction = $(experiment[:fraction]), repetitions = $(experiment[:repetitions]) using ", kind, " on ",
Dates.format(Dates.now(), "yyyy-mm-dd_HH.MM.SS"))
filename = string(folder, "results_", split(basename(args["data"]), ".")[1], ".mat")
println(filename)
matopen(filename, "w") do io
write(io, "mse", mse)
write(io, "violations", violations)
write(io, "README", README)
end
end
function main()
println("Using $(Threads.nthreads()) threads")
# args = parse_commandline()
args = mock_args()
experiment = Dict{Symbol,Any}()
experiment[:dimensions] = 1
experiment[:fraction] = 5 * 10 .^range(-4, stop=-1, length=10)[1:8] # Fraction of total number of triplets to be used to calculate the embedding ∈ [0,1]
experiment[:repetitions] = 30
experiment[:max_iter] = 1000
experiment[:σ] = [2,6,20]
data = TripletEmbeddings.load_data(args["data"])
#Random.seed!(4)
# tSTE(args, data, experiment)
Random.seed!(4)
STE(args, data, experiment)
#Random.seed!(4)
# GNMDS(args, data, experiment)
#Random.seed!(4)
# CKL(args, data, experiment)
end
main()