-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclustering_performance_lib.py
278 lines (206 loc) · 10.7 KB
/
clustering_performance_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# -*- coding: utf-8 -*-
# <nbformat>3.0</nbformat>
# <codecell>
import os
import hash_utils
import joblib_utils as ju
import numpy as np
import hybridata_creation_lib as hcl
import runspikedetekt_lib as rsd
import detection_statistics as ds
import runKK_lib as rkk
#from spikedetekt2.dataio import Experiment
from spikedetekt2 import *
from sklearn.metrics import confusion_matrix
@ju.func_cache
def get_confusion_matrix(a,b):
conf = confusion_matrix(a,b)
return conf
def EntropyH(Prob):
''' Required for computing Meila's VI metric
Computes entropy of a discrete random variable taking K values
entropyH = -dot(prob,logP)'''
print Prob.shape
K = Prob.shape[0]
logP = np.zeros((K,1))
print logP.shape
#logP= log(Prob)
for k in np.arange(K):
if Prob[k] == 0:
logP[k] = 0 #avoid the minus infinity when Prob(k) = 0
else:
logP[k] = np.log(Prob[k])
entropyH = -np.dot(Prob.T,logP )
return entropyH
def MutualInf(Prob, Probprime, ProbJoint):
'''Mutual information between the associated random variables, prob,
probprime, and their joint distribution, probjoint'''
K = Prob.shape[0]
Kprime = Probprime.shape[0]
Infie = np.zeros((K,Kprime))
logie = np.zeros((K,Kprime))
#Inf=0
for i in np.arange(K):
for j in np.arange(Kprime):
if ProbJoint[i,j] == 0:
Infie[i,j] = 0
else:
#logie(i,j)= log(ProbJoint(i,j)/(Prob(i)*Probprime(j)));
#Inf = Inf + ProbJoint(i,j).*( log(ProbJoint(i,j)/(Prob(i)*Probprime(j))) );
Infie[i,j] = ProbJoint[i,j]*( np.log( np.true_divide(ProbJoint[i,j],(Prob[i]*Probprime[j]))) )
#Infie(i,j) = ProbJoint(i,j).*( logie(i,j) );
#Inf.logie=logie;
infisum = np.sum(Infie)
mutual_inf = (infisum, Infie)
return mutual_inf
def VImetric(ConfusionMatrix):
'''Computes Meila's VI metric between two
clusterings of the same data, e.g. KK clustering
and the detcrit_groundtruth from the confusion matrix'''
#nbklust = ConfusionMatrix.shape[0]
#nbklustprime = ConfusionMatrix.shape[1]
totalspikes = np.sum(ConfusionMatrix)
#Pk = np.zeros((nbklust,1))
#Pkprime = np.zeros((nbklustprime, 1))
Pk = np.true_divide(np.sum(ConfusionMatrix, axis = 1),totalspikes)
#for k in np.arange(nbklust):
# Pk[k] = np.sum(ConfusionMatrix[k,:])/totalspikes
Pkprime = np.true_divide(np.sum(ConfusionMatrix, axis = 0),totalspikes)
#for kk in np.arange(nbklustprime):
# Pkprime[kk] = np.sum(ConfusionMatrix[:,kk])/totalspikes
PJoint = np.true_divide(ConfusionMatrix,totalspikes)
HC = EntropyH(Pk)
HCprime = EntropyH(Pkprime)
Inff = MutualInf(Pk,Pkprime,PJoint)
#mutual_inf = (infisum, Infie)
VI = HC+HCprime - 2*Inff[0];
VImetrics = {'VI':VI, 'Mutual Inf': Inff, 'PJoint' : PJoint, 'PK': Pk, 'PKprime': Pkprime, 'HC': HC, 'HCprime': HCprime}
return VImetrics
def create_confusion_matrix_fromclu(hybdatadict, SDparams, prb, detectioncrit, KKparams):
''' will create the confusion matrix, using the equivalent to a clu file
and detcrit groundtruth res and clu files, which is now contained in the kwik file
which will either be from KK or SVM and of the form:
Hash(hybdatadict)_Hash(sdparams)_Hash(detectioncrit)_KK_Hash(kkparams).kwik
Hash(hybdatadict)_Hash(sdparams)_Hash(detectioncrit)_SVM_Hash(svmparams).kwik'''
argSD = [hybdatadict,SDparams,prb]
if ju.is_cached(rsd.run_spikedetekt,*argSD):
print 'Yes, SD has been run \n'
hash_hyb_SD = rsd.run_spikedetekt(hybdatadict,SDparams,prb)
else:
print 'You need to run Spikedetekt before attempting to analyse results '
argTD = [hybdatadict, SDparams,prb, detectioncrit]
if ju.is_cached(ds.test_detection_algorithm,*argTD):
print 'Yes, you have run detection_statistics.test_detection_algorithm() \n'
detcrit = ds.test_detection_algorithm(hybdatadict, SDparams,prb, detectioncrit)
else:
print 'You need to run detection_statistics.test_detection_algorithm() \n in order to obtain a groundtruth'
#argKK = [hybdatadict, SDparams, prb, detectioncrit, KKparams]
#print 'What the bloody hell is going on?'
#if ju.is_cached(rkk.make_KKfiles_Script,*argKK):
# print 'Yes, you have created the scripts for running KK, which you have hopefully run!'
# basefilename = rkk.make_KKfiles_Script(hybdatadict, SDparams, prb, detectioncrit, KKparams)
#else:
# print 'You need to run KK to generate a clu file '
#print 'Did you even get here?'
basefilename = rkk.make_KKfiles_Script_full(hybdatadict, SDparams, prb, detectioncrit, KKparams)
DIRPATH = hybdatadict['output_path']
KKclufile = DIRPATH+ basefilename + '.clu.1'
KKclusters = np.loadtxt(KKclufile,dtype=np.int32,skiprows=1)
conf = get_confusion_matrix(KKclusters, detcrit['detected_groundtruth'])
return detcrit, KKclusters,conf
#return conf
#return confusion_matrix
def create_confusion_matrix_fromclu_ind(hybdatadict, SDparams, prb, detectioncrit, KKparams):
''' will create the confusion matrix, using the equivalent to a clu file
and detcrit groundtruth res and clu files, which is now contained in the kwik file
which will either be from KK or SVM and of the form:
Hash(hybdatadict)_Hash(sdparams)_Hash(detectioncrit)_KK_Hash(kkparams).kwik
Hash(hybdatadict)_Hash(sdparams)_Hash(detectioncrit)_SVM_Hash(svmparams).kwik'''
argSD = [hybdatadict,SDparams,prb]
if ju.is_cached(rsd.run_spikedetekt,*argSD):
print 'Yes, SD has been run \n'
hash_hyb_SD = rsd.run_spikedetekt(hybdatadict,SDparams,prb)
else:
print 'You need to run Spikedetekt before attempting to analyse results '
argTD = [hybdatadict, SDparams,prb, detectioncrit]
if ju.is_cached(ds.test_detection_algorithm,*argTD):
print 'Yes, you have run detection_statistics.test_detection_algorithm() \n'
detcrit = ds.test_detection_algorithm(hybdatadict, SDparams,prb, detectioncrit)
else:
print 'You need to run detection_statistics.test_detection_algorithm() \n in order to obtain a groundtruth'
#argKK = [hybdatadict, SDparams, prb, detectioncrit, KKparams]
#print 'What the bloody hell is going on?'
#if ju.is_cached(rkk.make_KKfiles_Script,*argKK):
# print 'Yes, you have created the scripts for running KK, which you have hopefully run!'
# basefilename = rkk.make_KKfiles_Script(hybdatadict, SDparams, prb, detectioncrit, KKparams)
#else:
# print 'You need to run KK to generate a clu file '
#print 'Did you even get here?'
basefilename = rkk.make_KKfiles_Script_detindep_full(hybdatadict, SDparams, prb, KKparams)
DIRPATH = hybdatadict['output_path']
KKclufile = DIRPATH+ basefilename + '.clu.1'
KKclusters = np.loadtxt(KKclufile,dtype=np.int32,skiprows=1)
conf = get_confusion_matrix(KKclusters, detcrit['detected_groundtruth'])
return detcrit, KKclusters,conf
#return conf
#return confusion_matrix
def create_confusion_matrix_KKhashnameclu(KKhashnameclu):
'''Get the confusion matrix directly from the .clu file
by exploiting the fact that the corresponding detcrit.clu.1
file has the same name minus one hashname of length 32'''
KKclusters = np.loadtxt(KKhashnameclu,dtype=np.int32,skiprows=1)
detcritclufile = KKhashnameclu[:-39]+'.detcrit.clu.1'
detcrit = np.loadtxt(detcritclufile, dtype = np.int32, skiprows =1)
conf = confusion_matrix(KKclusters,detcrit)
return detcrit, KKclusters, conf
def analysis_confKK(hybdatadict, SDparams,prb, detectioncrit, defaultKKparams, paramtochange, listparamvalues, detcrit = None):
''' Analyse results of one parameter family of KK jobs'''
outlistKK = rkk.one_param_varyKK(hybdatadict, SDparams,prb, detectioncrit, defaultKKparams, paramtochange, listparamvalues)
#outlistKK = [listbasefiles, outputdicts]
argTD = [hybdatadict, SDparams,prb, detectioncrit]
if ju.is_cached(ds.test_detection_algorithm,*argTD):
print 'Yes, you have run detection_statistics.test_detection_algorithm() \n'
detcrit_groundtruth = ds.test_detection_algorithm(hybdatadict, SDparams,prb, detectioncrit)
else:
print 'You need to run detection_statistics.test_detection_algorithm() \n in order to obtain a groundtruth'
detcritclu = detcrit_groundtruth['detected_groundtruth']
NumSpikes = detcritclu.shape[0]
cluKK = np.zeros((len(outlistKK[0]),NumSpikes))
confusion = []
for k, basefilename in enumerate(outlistKK[0]):
clufile = hybdatadict['output_path'] + basefilename + '.clu.1'
print os.path.isfile(clufile)
if os.path.isfile(clufile):
cluKK[k,:] = np.loadtxt(clufile, dtype = np.int32, skiprows =1)
else:
print '%s does not exist '%(clufile)
conf = get_confusion_matrix(cluKK[k,:],detcritclu)
print conf
confusion.append(conf)
return confusion
def analysis_ind_confKK(hybdatadict, SDparams,prb, detectioncrit, defaultKKparams, paramtochange, listparamvalues, detcrit = None):
''' Analyse results of one parameter family of KK jobs
Not very different to the fucntion above only detcrit independent MKKbasefilenames'''
outlistKK = rkk.one_param_varyKK_ind(hybdatadict, SDparams,prb, defaultKKparams, paramtochange, listparamvalues)
#outlistKK = [listbasefiles, outputdicts]
argTD = [hybdatadict, SDparams,prb, detectioncrit]
if ju.is_cached(ds.test_detection_algorithm,*argTD):
print 'Yes, you have run detection_statistics.test_detection_algorithm() \n'
detcrit_groundtruth = ds.test_detection_algorithm(hybdatadict, SDparams,prb, detectioncrit)
else:
print 'You need to run detection_statistics.test_detection_algorithm() \n in order to obtain a groundtruth'
detcritclu = detcrit_groundtruth['detected_groundtruth']
NumSpikes = detcritclu.shape[0]
cluKK = np.zeros((len(outlistKK[0]),NumSpikes))
confusion = []
for k, basefilename in enumerate(outlistKK[0]):
clufile = hybdatadict['output_path'] + basefilename + '.clu.1'
print os.path.isfile(clufile)
if os.path.isfile(clufile):
cluKK[k,:] = np.loadtxt(clufile, dtype = np.int32, skiprows =1)
else:
print '%s does not exist '%(clufile)
conf = get_confusion_matrix(cluKK[k,:],detcritclu)
print conf
confusion.append(conf)
return confusion