-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlightning_sed_plot.pro
253 lines (221 loc) · 11.8 KB
/
lightning_sed_plot.pro
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
function lightning_sed_plot, lght_struct, _extra=_extra_plot
;+
; Name
; ----
; LIGHTNING_SED_PLOT
;
; Purpose
; -------
; Creates a plot of an SED using the output structure from Lighting.
; Values for the plot are automatically extracted from the output structure.
;
; Calling Sequence
; ----------------
; ::
;
; plt = lightning_sed_plot(lght_struct [, _extra=_extra_plot])
;
; Inputs
; ------
; ``lght_struct`` : structure
; A Lightning output structure for a single SED. Can be for any fitting
; algorithm or combination of models.
;
; Output
; ------
; ``plt`` : object
; The plot object containing the SED plot.
;
; Notes
; -----
; - To save the output plot, which is an IDL object, use:
; ``x.save,'/YOUR_FOLDER/FILE_NAME.FILE_TYPE'``
; - See https://www.harrisgeospatial.com/docs/Save_Method.html for file types
; and more details on saving graphics
;
; Modification History
; --------------------
; - 2022/11/10: Created (Keith Doore)
; - 2022/11/14: Added model uncertainty to residual calculation for correct residual values (Keith Doore)
;-
Compile_opt idl2
On_error,2
; Check for allowable type and size of inputs
if n_elements(lght_struct) eq 0 then message, 'Variable is undefined: LGHT_STRUCT.'
if size(lght_struct, /type) ne 8 then message, 'LGHT_STRUCT is not of type structure.'
if size(lght_struct, /dim) ne 1 then message, 'LGHT_STRUCT can only contain one SED at a time.'
; Extract the data from the structure
lght_tags = strupcase(tag_names(lght_struct))
; Default outputs in structure
bestfit = where(lght_struct.lnprob eq max(lght_struct.lnprob))
wave_filters = lght_struct.WAVE_FILTERS
Lnu_obs = lght_struct.LNU_OBS
Lnu_unc = lght_struct.LNU_UNC
Lnu_mod = (lght_struct.LNU_MOD)[*, bestfit]
model_unc = lght_struct.model_unc
; Check for Xray data
if total(lght_tags eq 'XRAY_BANDPASS') eq 1 then begin
xray_data = 1
xray_bandpass = lght_struct.XRAY_BANDPASS
xray_mod = (lght_struct.LNU_XRAYMOD)[*, bestfit]
if total(lght_tags eq 'NET_COUNTS') eq 1 then begin
xray_obs = (lght_struct.LNU_XRAY_OBS)[*, bestfit]
xray_unc = (lght_struct.LNU_XRAY_UNC)[*, bestfit]
endif else begin
xray_obs = lght_struct.LNU_XRAY_OBS
xray_unc = lght_struct.LNU_XRAY_UNC
endelse
endif else xray_data = 0
; Check for types of high res models and compile data into single array
if size(lght_struct.lnu_mod_hires, /n_dim) eq 2 then highres_unc = 1 else highres_unc = 0
hires_model_names = 'Total Model'
hires_color = 'gray'
Lnu_hires_unc = !null
if xray_data then begin
wave_hires = [lght_struct.WAVE_XRAYMOD_HIRES, lght_struct.WAVE_HIRES]
Lnu_hires = [(lght_struct.LNU_XRAYMOD_HIRES)[*, 0], (lght_struct.LNU_MOD_HIRES)[*, 0]]
if highres_unc then Lnu_hires_unc = [[minmax(lght_struct.LNU_XRAYMOD_HIRES, dim=2)], [minmax(lght_struct.LNU_MOD_HIRES, dim=2)]]
if total(lght_tags eq 'LNU_DUSTMOD_HIRES') eq 1 then begin
hires_model_names = ['Dust Model', hires_model_names]
hires_color = ['green', hires_color]
Lnu_hires = [[replicate(0.d0, n_elements(lght_struct.WAVE_XRAYMOD_HIRES)), $
(lght_struct.LNU_DUSTMOD_HIRES)[*, 0]], [Lnu_hires]]
if highres_unc then Lnu_hires_unc = [[[replicate(0.d0, 2, n_elements(lght_struct.WAVE_XRAYMOD_HIRES))], $
[minmax(lght_struct.LNU_DUSTMOD_HIRES, dim=2)]], [[Lnu_hires_unc]]]
endif
if total(lght_tags eq 'LNU_AGNMOD_HIRES') eq 1 then begin
hires_model_names = ['AGN Model', hires_model_names]
hires_color = ['orange', hires_color]
if total(lght_tags eq 'LNU_XRAYMOD_AGN_HIRES') eq 1 then begin
Lnu_hires = [[(lght_struct.LNU_XRAYMOD_AGN_HIRES)[*, 0], (lght_struct.LNU_AGNMOD_HIRES)[*, 0]], [Lnu_hires]]
if highres_unc then Lnu_hires_unc = [[[minmax(lght_struct.LNU_XRAYMOD_AGN_HIRES, dim=2)], $
[minmax(lght_struct.LNU_AGNMOD_HIRES, dim=2)]], [[Lnu_hires_unc]]]
endif else begin
Lnu_hires = [[replicate(0.d0, n_elements(lght_struct.WAVE_XRAYMOD_HIRES)), $
(lght_struct.LNU_AGNMOD_HIRES)[*, 0]], [Lnu_hires]]
if highres_unc then Lnu_hires_unc = [[[replicate(0.d0, 2, n_elements(lght_struct.WAVE_XRAYMOD_HIRES))], $
[minmax(lght_struct.LNU_AGNMOD_HIRES, dim=2)]], [[Lnu_hires_unc]]]
endelse
endif
if total(lght_tags eq 'LNU_STARMOD_HIRES') eq 1 then begin
hires_model_names = ['Stellar Model', hires_model_names]
hires_color = ['red', hires_color]
Lnu_hires = [[(lght_struct.LNU_XRAYMOD_STAR_HIRES)[*, 0], (lght_struct.LNU_STARMOD_HIRES)[*, 0]], [Lnu_hires]]
if highres_unc then Lnu_hires_unc = [[[minmax(lght_struct.LNU_XRAYMOD_STAR_HIRES, dim=2)], $
[minmax(lght_struct.LNU_STARMOD_HIRES, dim=2)]], [[Lnu_hires_unc]]]
endif
endif else begin
wave_hires = lght_struct.WAVE_HIRES
Lnu_hires = (lght_struct.LNU_MOD_HIRES)[*, 0]
if highres_unc then Lnu_hires_unc = minmax(lght_struct.LNU_MOD_HIRES, dim=2)
if total(lght_tags eq 'LNU_DUSTMOD_HIRES') eq 1 then begin
hires_model_names = ['Dust Model', hires_model_names]
hires_color = ['green', hires_color]
Lnu_hires = [[(lght_struct.LNU_DUSTMOD_HIRES)[*, 0]], [Lnu_hires]]
if highres_unc then Lnu_hires_unc = [[[minmax(lght_struct.LNU_DUSTMOD_HIRES, dim=2)]], [[Lnu_hires_unc]]]
endif
if total(lght_tags eq 'LNU_AGNMOD_HIRES') eq 1 then begin
hires_model_names = ['AGN Model', hires_model_names]
hires_color = ['orange', hires_color]
Lnu_hires = [[(lght_struct.LNU_AGNMOD_HIRES)[*, 0]], [Lnu_hires]]
if highres_unc then Lnu_hires_unc = [[[minmax(lght_struct.LNU_AGNMOD_HIRES, dim=2)]], [[Lnu_hires_unc]]]
endif
if total(lght_tags eq 'LNU_STARMOD_HIRES') eq 1 then begin
hires_model_names = ['Stellar Model', hires_model_names]
hires_color = ['red', hires_color]
Lnu_hires = [[(lght_struct.LNU_STARMOD_HIRES)[*, 0]], [Lnu_hires]]
if highres_unc then Lnu_hires_unc = [[[minmax(lght_struct.LNU_STARMOD_HIRES, dim=2)]], [[Lnu_hires_unc]]]
endif
endelse
; Plot the data
nu = 1.d4*!lightning_cgs.clight/wave_filters
nu_highres = 1.d4*!lightning_cgs.clight/wave_hires
if highres_unc then $
nu_highres_fill = rebin(reform(nu_highres, 1, n_elements(nu_highres)), 2, n_elements(nu_highres))
; Plot high resolution spectra
hires_plt = objarr(n_elements(hires_model_names))
for i=0, n_elements(hires_model_names)-1 do begin
if i eq 0 then overplot = 0 else overplot = 1
if highres_unc then $
plt_hires = FillPlot(wave_hires, nu_highres_fill*Lnu_hires_unc[*, *, i], linestyle='', $
fill_transp=65, overplot=overplot, fill_color=hires_color[i])
hires_plt[i] = plot(wave_hires, nu_highres*lnu_hires[*, i], /over, name=hires_model_names[i], $
color=hires_color[i], thick=2)
endfor
; Remove Lnu_obs data that is negative or 0 since using log scale
; Save those locations if we need to make upper limits
missing_data = where(lnu_obs le 0, /null)
nulnu_obs = nu*lnu_obs
nulnu_obs[missing_data] = !values.D_NaN
; Check for uncertainties that may extend to or below 0
low_unc = where(nu*(lnu_obs-lnu_unc) le 0, Nlow_unc, comp=pos_data, /null)
; Set range for positive values within 1 order of magnitude
yrange=alog10(minmax([nu*(lnu_obs+lnu_unc), (nu*(lnu_obs-lnu_unc))[pos_data]]))+[-1, 1]
yrange[0] = 10.d^floor(yrange[0])
yrange[1] = 10.d^ceil(yrange[1])
; Reshape uncertainty array to (2 x Nfilters) if Nlow_unc > 0. Make lower uncertainty min yrange.
if Nlow_unc gt 0 then begin
nulnu_unc = rebin(reform(nu*lnu_unc, 1, Nfilters), 2, Nfilters)
nulnu_unc[0, low_unc] = (nu*lnu_obs)[low_unc] - yrange[0]
endif else nulnu_unc = nu*lnu_unc
; Plot observed data
plt = errorplot(wave_filters, nulnu_obs, nulnu_unc, /over, /xlog, /ylog, linestyle='', name='Data', $
yrange=yrange, xtickunits='scientific', ytitle='$\nuL_\nu [L_\odot]$', symbol='D', $
_extra=_extra_plot)
position = plt.position
residual_position = [position[0], position[1], position[2], position[1]+(position[3]-position[1])*4/15]
position = [position[0], position[1]+(position[3]-position[1])*4/15+0.02, position[2], position[3]]
plt_temp = plot(wave_filters, nulnu_obs, /over, xshowtext=0, position=position, /nodata)
; Create upper limits if needed
uplim_loc = where(lnu_unc gt 0 and lnu_obs le 0, Nuplim, /null)
if Nuplim gt 0 then uplim=symbol(wave_filters[uplim_loc], (nu*lnu_unc)[uplim_loc], sym_text='$\downarrow$', /data)
lgnd = LEGEND(target=[hires_plt, plt], transp=30, position=[position[2]-0.01, position[1]+0.01], $
VERTICAL_ALIGNMENT=0, HORIZONTAL_ALIGNMENT=1)
if xray_data then begin
Nxray = n_elements(xray_bandpass) / 2.d
xray_obs[where(xray_obs le 0, /null)] = !values.D_NaN
xray_nu = xray_bandpass / (!lightning_cgs.hplanck / !lightning_cgs.keV)
xray_wave = 1.d4*!lightning_cgs.clight/xray_nu
xray_mean_wave = mean(xray_wave, dim=1)
xray_mean_nu = 1.d4*!lightning_cgs.clight/xray_mean_wave
xray_wave_unc = dblarr(2, Nxray)
xray_wave_unc[0, *] = xray_mean_wave - xray_wave[1, *]
xray_wave_unc[1, *] = xray_wave[0, *] - xray_mean_wave
xray_yrange=alog10(minmax([xray_nu*xray_obs+xray_nu*xray_unc, xray_nu*xray_obs-xray_nu*xray_unc]))+[-1, 1]
xray_yrange[0] = 10.d^floor(xray_yrange[0]) < yrange[0]
xray_yrange[1] = 10.d^ceil(xray_yrange[1]) > yrange[1]
plt = errorplot(xray_mean_wave, xray_mean_nu*xray_obs, xray_wave_unc, xray_mean_nu*xray_unc, /over, linestyle='', $
axis_style=1, yrange=xray_yrange, xshowtext=0, symbol='D', _extra=_extra_plot)
plt_temp = plot(xray_mean_wave, xray_mean_nu*xray_obs, /over, xshowtext=0, position=position, /nodata)
; Add upper axis in energy
yaxis = axis('Y', location='right', showtext=0, target=plt)
xray_xrange=(1.d4*!lightning_cgs.clight*(!lightning_cgs.hplanck / !lightning_cgs.keV)) / plt.xrange
xpos = position
plt_temp = plot(xray_mean_wave, xray_mean_nu*xray_obs, /xlog, /ylog, xrange=xray_xrange, $
position=[xpos[0],xpos[3],xpos[2],xpos[3]+(xpos[3]-xpos[1])], $
xtickdir=1, xtextpos=1, /current, axis_style=1, yshowtext=0, xtickunits='scientific', $
ytranspar=100, /nodata, xtitle='Observed-Frame Energy E [keV]', $
xTICKFONT_SIZE=plt.xTICKFONT_SIZE, yTICKFONT_SIZE=plt.yTICKFONT_SIZE)
endif
residuals = (Lnu_obs - Lnu_mod)/sqrt(Lnu_unc^2.d + (model_unc * Lnu_mod)^2.d)
non_nan = where(finite(residuals))
yrange_resid = replicate(max(abs([floor(residuals[non_nan]-1), ceil(residuals[non_nan]+1)])), 2)*[-0.9999,0.9999]
plt = plot(plt.xrange, [0, 0], /current, ytitle='Residual [$\sigma$]', $
/xlog, xtickunits='scientific', position=residual_position, $
xrange=plt.xrange, yrange=yrange_resid, thick=2)
plt = plot(plt.xrange, [1, 1], /over, color='light grey', thick=2)
plt = plot(plt.xrange, [-1,-1], /over, color='light grey', thick=2)
plt = errorplot(wave_filters, residuals, replicate(1.d, n_elements(residuals)), symbol='D', $
xtitle='Observed-frame Wavelength $\lambda [\mu$m]', /over, linestyle='', _extra=_extra_plot)
if xray_data then begin
xray_residuals = (xray_obs - xray_mod)/sqrt(xray_unc^2.d + (model_unc * xray_mod)^2.d)
non_nan = where(finite(xray_residuals))
xray_yrange_resid = replicate(max(abs([floor(xray_residuals[non_nan]-1), ceil(xray_residuals[non_nan]+1)])), 2)*[-0.9999,0.9999]
xray_yrange_resid[0] = 10.d^floor(xray_yrange_resid[0]) < yrange_resid[0]
xray_yrange_resid[1] = 10.d^ceil(xray_yrange_resid[1]) > yrange_resid[1]
plt = errorplot(xray_mean_wave, xray_residuals, xray_wave_unc, replicate(1.d, n_elements(xray_residuals)), $
/over, linestyle='', symbol='D', _extra=_extra_plot)
endif
plt = plot(plt.xrange, [0, 0], /over, position=residual_position, yrange=yrange_resid, /nodata)
return, plt
end