-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcorner_plot.pro
544 lines (498 loc) · 26.2 KB
/
corner_plot.pro
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
function corner_plot, distribution, distribution_labels, distribution_color=distribution_color, $
distribution_thick=distribution_thick, distribution_range=distribution_range, $
show_median=show_median, bin=bin, normalize=normalize, contour_levels=contour_levels, $
contour_smooth=contour_smooth, contour_thick=contour_thick, show_correlate=show_correlate, $
correlate_padding=correlate_padding, correlate_location=correlate_location, $
truths_values=truths_values, truths_color=truths_color, inverted=inverted, $
padding=padding, position=position, tickinterval=tickinterval, font_size=font_size, $
_extra=_extra_plot
;+
; Name
; ----
; CORNER_PLOT
;
; Purpose
; -------
; Creates a corner multivariate distribution plot for a sampled
; distribution. Diagonal plots contain the histogram of each parameter
; in the distribution, and the lower off-diagonal plots contain
; the contours of the 2D distributions of corresponding parameters.
;
; Calling Sequence
; ----------------
; ::
;
; plt = corner_plot(distribution, distribution_labels, [distribution_color = , $
; distribution_thick = , distribution_range = , /show_median, $
; bin = , /normalize, contour_levels = , contour_smooth = , $
; contour_thick = , /show_correlate, correlate_padding = , $
; correlate_location = , truths_values = , truths_color = , $
; /inverted, padding = , position = , tickinterval = , $
; font_size = , _extra=_extra_plot])
;
; Inputs
; ------
; ``distribution`` : int, float, or double array(Nparam, Nsamples, Ndist)
; The multivariate distribution. A value of ``Ndist > 1`` indicates that
; multiple multivariate distributions for the same parameters are included
; and are to be overplotted (see examples).
; ``distribution_labels`` : string array(Nparam)
; The labels associated with each parameter of the distribution.
;
; Optional Inputs
; ---------------
; ``distribution_color`` : string array(Ndist) or int, float, or double array(3, Ndist)
; The color name or RGB vector that specifies the color associated with each
; individual distribution. (Default = ``'black'``)
; ``distribution_thick`` : int, float, or double scalar
; The line thickness of the histogram distributions. (Default = ``1``)
; ``distribution_range`` : int, float, or double array(2, Nparam)
; The plotting range of the parameters. (Default = ``minmax(distribution[*, *, 0], dim=2)``)
; ``show_median`` : flag
; If set, then the histograms will have the median marked with a vertical
; dashed line, and the contour plots will have a dot at the median.
; ``bin`` : int, float, or double array(Nparam)
; The size of the bins of each histogram. If not set, then the bin size is
; automatically determined using Scott's normal reference rule.
; ``normalize`` : flag
; If set, then the histograms will be normalized to their maximum value.
; ``contour_levels`` : float or double array(Nlevels)
; The confidence levels at which to draw the contour lines. Values must
; be between 0 and 1. (Default = ``0.6827``)
; ``contour_smooth`` : int, float, or double scalar
; The width of the smoothing window for smoothing the contour lines. (Default = ``1``)
; ``contour_thick`` : int, float, or double scalar
; The line thickness of the contour lines. (Default = ``1``)
; ``show_correlate`` : flag
; If set, then print the correlation coefficients of the parameters in a corner
; of each corresponding contour plot given by ``correlate_location``.
; ``correlate_padding`` : float or double scalar
; The amount of padding as a fraction of total plot size to offset the correlation value
; away from the corner of each contour plot. Value must be between 0 and 1. (Default = ``0``)
; ``correlate_location`` : int array(Ndist)
; The location for placing the correlation coefficients. Values must be 0, 1, 2, or 3; where
; ``0`` is the bottom left corner, ``1`` is the upper left corner,
; ``2`` is the upper right corner (Default), and ``3`` is the bottom right corner.
; ``truths_values`` : int, float, or double array(Nparam)
; The truth or reference values of each parameter to indicate on the plots. The histograms
; will have the value marked with a solid vertical line, and the contour plots will have
; the value marked with a diamond.
; ``truths_color`` : string scalar or int, float, or double array(3)
; The color name or RGB vector that specifies the color associated with each truth value.
; (Default = ``'red'``)
; ``inverted`` : flag
; If set, then the contour plots will be located in the upper right conner, rather
; than the default of the lower left.
; ``padding`` : float or double scalar
; The amount of padding as a fraction of total plot size to offset between each of the plots.
; Value must be between 0 and 1. (Default = ``0.075``)
; ``position`` : int, float, or double array(4)
; The position of the graphic within the window. The coordinates [X1, Y1, X2, Y2] define
; the lower left and upper right corners of the graphic. Coordinates are expressed in
; normalized units. (Default = ``[0.1, 0.1, 0.9, 0.98]``)
; ``tickinterval`` : int, float, double array(Nparam)
; The intervals between major tick marks for each parameter.
; ``font_size`` : int, float, double scalar
; The font size of the ticks and labels in points. (Default = ``7``)
;
; Output
; ------
; ``plt`` : object
; The plot object containing the SED plot.
;
; Examples
; --------
; .. highlight:: idl
; ::
;
; ;For P = 1
; distribution = randomn(seed, 3, 1000)
; distribution_labels = ['x', 'y', 'z']
; x = corner_plot(distribution, distribution_labels)
; ;
; ;For P > 1
; distribution = randomn(seed, 3, 1000, 2)
; name = ['x', 'y', 'z']
; x = corner_plot(distribution, distribution_labels, distribution_color=['red', 'blue'])
;
; Notes
; -----
; - To save the output plot, which is an IDL object, use:
; ``plt.save,'/YOUR_FOLDER/FILE_NAME.FILE_TYPE'``
; - See https://www.harrisgeospatial.com/docs/Save_Method.html for file types
; and more details on saving graphics
;
; Modification History
; --------------------
; - 2020/06/23: Created (Keith Doore)
; - 2020/07/10: Fixed many remaining bugs and added saving image notes (Keith Doore)
; - 2020/09/14: Added capabilities for distribution to be 3 dimensional, which allows for
; overplotting of distributions (Keith Doore)
; - 2020/09/14: Added capabilities for distribution to be 3 dimensional, which allows for
; overplotting of distributions (Keith Doore)
; - 2020/09/14: Added ``distribution_thick`` and ``distribution_color`` (Keith Doore)
; - 2020/09/14: Added ``correlate_color``, ``correlate_location``, and ``correlate_padding`` (Keith Doore)
; - 2021/01/12: Added ``inverted`` keyword (Keith Doore)
; - 2022/08/04: Added optional ``truths_values`` and ``truths_color`` inputs (Keith Doore)
; - 2022/12/07: Added optional ``distribution_range`` input (Keith Doore)
; - 2022/12/15: Updated documentation (Keith Doore)
; - 2022/12/15: Removed ``show_dots`` keyword (Keith Doore)
; - 2022/12/15: Removed ``squareroot`` keyword and replaced with ``bins`` optional input (Keith Doore)
; - 2022/12/15: Removed ``contour_color`` and ``correlate_color`` optional inputs and tied them
; to ``distribution_color`` (Keith Doore)
; - 2022/12/15: Removed ``noshow_contour`` keyword (Keith Doore)
; - 2022/12/15: Replaced ``height`` and ``width`` optional inputs with ``position`` as standard
; in IDL plotting (Keith Doore)
; - 2022/12/15: Removed ``xwindow`` and ``ywindow`` optional inputs. Instead rely on IDL to
; create window if needed. (Keith Doore)
; - 2022/12/15: Updated error handling (Keith Doore)
;-
Compile_opt idl2
On_error,2
; Error Handling
if n_elements(distribution) eq 0 then message, 'Variable is undefined: DISTRIBUTION.'
if size(distribution, /type) lt 2 or size(distribution, /type) gt 5 then $
message, 'DISTRIBUTION must be of type int, float, or double.'
if size(distribution, /n_dim) lt 1 or size(distribution, /n_dim) gt 3 then $
message, 'DISTRIBUTION must be a 2-D or 3-D array.'
Nparam = (size(distribution, /dim))[0]
Nsamples = (size(distribution, /dim))[1]
if size(distribution, /n_dim) eq 3 then Ndist = (size(distribution, /dim))[2] else Ndist = 1
if n_elements(distribution_labels) eq 0 then message, 'Variable is undefined: DISTRIBUTION_LABELS.'
if size(distribution_labels, /type) ne 7 then $
message, 'DISTRIBUTION_LABELS must be of type string.'
if size(distribution_labels, /n_dim) ne 1 then $
message, 'DISTRIBUTION_LABELS must be a 1-D array.'
if n_elements(distribution_labels) ne Nparam then $
message, 'DISTRIBUTION_LABELS must have Nparam number of elements.'
; Check to make sure each parameter and distribution has more than 1 unique entry
for j=0, Ndist-1 do begin
for i=0, Nparam-1 do begin
uniq_elements = n_elements(uniq(distribution[i, *, j], sort(distribution[i, *, j])))
if uniq_elements lt 2 then $
message, 'DISTRIBUTION needs more than one unique entry for parameter: '+distribution_labels[i]
endfor
endfor
if n_elements(distribution_color) ne 0 then begin
if size(distribution_color, /type) eq 7 then begin
if size(distribution_color, /n_dim) gt 1 then $
message, 'DISTRIBUTION_COLOR must be a scalar or 1-D array if string color.'
if n_elements(distribution_color) ne Ndist then $
message, 'DISTRIBUTION_COLOR must have Ndist number of elements if a string.'
endif else if size(distribution_color, /type) lt 2 or size(distribution_color, /type) gt 5 then begin
if size(distribution_color, /n_dim) lt 1 or size(distribution_color, /n_dim) gt 2 then $
message, 'DISTRIBUTION_COLOR must be a 1-D or 2-D array if an RGB color.'
if (size(distribution_color, /dim))[0] ne 3 then $
message, 'DISTRIBUTION_COLOR must have a first dimension of length 3 if an RGB color.'
if size(distribution_color, /n_dim) eq 2 then if (size(distribution_color, /dim))[1] ne Ndist then $
message, 'DISTRIBUTION_COLOR must have a last dimension of length Ndist if an RGB color.'
endif else $
message, 'DISTRIBUTION_COLOR must be of type string or int, float, or double.'
endif else distribution_color = replicate('black', Ndist)
if n_elements(distribution_thick) ne 0 then begin
if size(distribution_thick, /type) lt 2 or size(distribution_thick, /type) gt 5 then $
message, 'DISTRIBUTION_THICK must be of type int, float, or double.'
if size(distribution_thick, /n_dim) ne 0 then $
message, 'DISTRIBUTION_THICK must be a scalar.'
if distribution_thick le 0 then $
message, 'DISTRIBUTION_THICK must be a positive value.'
endif
if n_elements(distribution_range) ne 0 then begin
if size(distribution_range, /type) lt 2 or size(distribution_range, /type) gt 5 then $
message, 'DISTRIBUTION_RANGE must be of type int, float, or double.'
if size(distribution_range, /n_dim) ne 2 then $
message, 'DISTRIBUTION_RANGE must be a 2-D array.'
if (size(distribution_range, /dim))[0] ne 2 then $
message, 'DISTRIBUTION_RANGE must have a first dimension of length 2.'
if (size(distribution_range, /dim))[1] ne Nparam then $
message, 'DISTRIBUTION_RANGE must have a last dimension of length Nparam.'
endif else distribution_range = minmax(distribution[*, *, 0], dim=2)
if n_elements(bin) ne 0 then begin
if size(bin, /type) lt 2 or size(bin, /type) gt 5 then $
message, 'BIN must be of type int, float, or double.'
if size(bin, /n_dim) ne 1 then $
message, 'BIN must be a 1-D array.'
if n_elements(bin) ne Nparam then $
message, 'BIN must have Nparam number of elements.'
if total(bin le 0) ne 0 then $
message, 'BIN must only contain positive values.'
endif
if n_elements(contour_levels) ne 0 then begin
if size(contour_levels, /type) lt 4 or size(contour_levels, /type) gt 5 then $
message, 'CONTOUR_LEVELS must be of type float or double.'
if size(contour_levels, /n_dim) gt 1 then $
message, 'CONTOUR_LEVELS must be a scalar or 1-D array.'
if total(contour_levels le 0 or contour_levels ge 1) ne 0 then $
message, 'CONTOUR_LEVELS must only contain values between 0 and 1.'
endif else contour_levels = 0.6827d
if n_elements(contour_smooth) ne 0 then begin
if size(contour_smooth, /type) lt 2 or size(contour_smooth, /type) gt 5 then $
message, 'CONTOUR_SMOOTH must be of type int, float, or double.'
if size(contour_smooth, /n_dim) ne 0 then $
message, 'CONTOUR_SMOOTH must be a scalar.'
if contour_smooth lt 0 then $
message, 'CONTOUR_SMOOTH must be a positive value.'
endif else contour_smooth = 1
if n_elements(contour_thick) ne 0 then begin
if size(contour_thick, /type) lt 2 or size(contour_thick, /type) gt 5 then $
message, 'CONTOUR_THICK must be of type int, float, or double.'
if size(contour_thick, /n_dim) ne 0 then $
message, 'CONTOUR_THICK must be a scalar.'
if contour_thick le 0 then $
message, 'CONTOUR_THICK must be a positive value.'
endif
if n_elements(correlate_padding) ne 0 then begin
if size(correlate_padding, /type) lt 4 or size(correlate_padding, /type) gt 5 then $
message, 'CORRELATE_PADDING must be of type float or double.'
if size(correlate_padding, /n_dim) ne 0 then $
message, 'CORRELATE_PADDING must be a scalar.'
if correlate_padding lt 0 or correlate_padding gt 1 then $
message, 'CORRELATE_PADDING must be a value between 0 and 1.'
endif else correlate_padding = 0
if n_elements(correlate_location) ne 0 then begin
if size(correlate_location, /type) lt 2 or size(correlate_location, /type) gt 5 then $
message, 'CORRELATE_LOCATION must be of type int, float, or double.'
if size(correlate_location, /n_dim) gt 1 then $
message, 'CORRELATE_LOCATION must be a scalar or 1-D array.'
if n_elements(correlate_location) ne Ndist then $
message, 'CORRELATE_LOCATION must have Ndist number of elements.'
value_check = intarr(Ndist)
for i=0, Ndist-1 do value_check[i] = total(correlate_location[i] eq [0, 1, 2, 3])
if total(value_check) ne Ndist then $
message, 'CORRELATE_LOCATION must be set to either 0, 1, 2, or 3.'
endif else correlate_location = 2
if n_elements(truths_values) ne 0 then begin
if size(truths_values, /type) lt 2 or size(truths_values, /type) gt 5 then $
message, 'TRUTHS_VALUES must be of type int, float, or double.'
if size(truths_values, /n_dim) ne 1 then $
message, 'TRUTHS_VALUES must be a 1-D array.'
if n_elements(truths_values) ne Nparam then $
message, 'TRUTHS_VALUES must have Nparam number of elements.'
endif
if n_elements(truths_color) ne 0 then begin
if size(truths_color, /type) eq 7 then begin
if size(truths_color, /n_dim) ne 0 then $
message, 'TRUTHS_COLOR must be a scalar if a string.'
endif else if size(truths_color, /type) lt 2 or size(truths_color, /type) gt 5 then begin
if size(truths_color, /n_dim) ne 1 then $
message, 'TRUTHS_COLOR must be a 1-D array if an RGB color.'
if n_elements(truths_color) ne 3 then $
message, 'TRUTHS_COLOR must have a length of 3 if an RGB color.'
endif else $
message, 'TRUTHS_COLOR must be of type string or int, float, or double.'
endif else truths_color = 'red'
if n_elements(padding) ne 0 then begin
if size(padding, /type) lt 4 or size(padding, /type) gt 5 then $
message, 'PADDING must be of type float or double.'
if size(padding, /n_dim) ne 0 then $
message, 'PADDING must be a scalar.'
if padding lt 0 or padding gt 1 then $
message, 'PADDING must be a value between 0 and 1.'
endif else padding = 0.075d
if n_elements(position) ne 0 then begin
if size(position, /type) lt 2 or size(position, /type) gt 5 then $
message, 'POSITION must be of type int, float, or double.'
if size(position, /n_dim) ne 1 then $
message, 'POSITION must be a 1-D array.'
if n_elements(position) ne 4 then $
message, 'POSITION must have a length of 4.'
if total(position lt 0 or position gt 1) ne 0 then $
message, 'POSITION must only contain values between 0 and 1.'
endif else position = [0.1, 0.1, 0.9, 0.98]
if n_elements(tickinterval) ne 0 then begin
if size(tickinterval, /type) lt 2 or size(tickinterval, /type) gt 5 then $
message, 'TICKINTERVAL must be of type int, float, or double.'
if size(tickinterval, /n_dim) ne 1 then $
message, 'TICKINTERVAL must be a 1-D array.'
if n_elements(tickinterval) ne Nparam then $
message, 'TICKINTERVAL must have Nparam number of elements.'
if total(tickinterval le 0) ne 0 then $
message, 'TICKINTERVAL must only contain positive values.'
endif
if n_elements(font_size) ne 0 then begin
if size(font_size, /type) lt 2 or size(font_size, /type) gt 5 then $
message, 'FONT_SIZE must be of type int, float, or double.'
if size(font_size, /n_dim) ne 0 then $
message, 'FONT_SIZE must be a scalar.'
if font_size le 0 then $
message, 'FONT_SIZE must be a positive value.'
endif else font_size = 7
; Determine number of bins to use
if n_elements(bin) eq 0 then bin = 3.49d*stddev(distribution, dim=2) / (double(Nsamples))^(1/3.d)
nbins = ceil((max(distribution, dim=2) - min(distribution, dim=2)) / bin)
; Determine histogram for each distribution and normalize
pdf = lonarr(max(nbins), Nparam, Ndist)
binloc = dblarr(max(nbins), Nparam, Ndist)
for j=0, Ndist-1 do begin
for i=0, Nparam-1 do begin
pdf[0:(nbins[i, j]-1), i, j] = histogram(distribution[i, *, j], nbins=nbins[i, j], locations=binvals)
binloc[0:(nbins[i, j]-1), i, j] = binvals
endfor
endfor
if keyword_set(normalize) then $
pdf=double(pdf)/rebin(reform(max(double(pdf), dim=1), 1, Nparam, Ndist), max(nbins), Nparam, Ndist)
; Create corner plot
; Get total width and height of plotting area
tot_width = position[2] - position[0]
tot_height = position[3]-position[1]
; Create new window if we do not want to plot on any current window
if n_elements(_extra_plot) gt 0 then if where(tag_names(_extra_plot) eq 'CURRENT') eq -1 then $
plt = window(_extra=_extra_plot)
; Create ytitles depending on if histograms are normalized
ytitle = 'P('+distribution_labels+')'
if keyword_set(normalize) then begin
yrange = [0, 1.1]
ytitle = replicate('$P/P_{max}$', Nparam)
endif
; Plot the histograms along the diagonal
for i=0, Nparam-1 do begin
if n_elements(tickinterval) ne 0 then xtickinterval=tickinterval[i]
position_current = [position[0] + (tot_width/Nparam * i) + (tot_width/Nparam * padding), $
position[3] - (tot_height/Nparam*(i+1)) + (tot_height/Nparam * padding), $
position[0] + (tot_width/Nparam * (i+1)), position[3] - (tot_height/Nparam * i)]
; Plot the first distribution for the given parameter in the current window with the specified properties
plt = plot(binloc[0:(nbins[i, 0]-1), i, 0], pdf[0:(nbins[i, 0]-1), i, 0], /stair, /current, $
xtitle=distribution_labels[i], ytitle=ytitle[i], xtickinterval=xtickinterval, $
position=position_current, xrange=distribution_range[*, i], yrange=yrange, $
xtickfont_size=font_size, ytickfont_size=font_size, color=distribution_color[0], $
thick=distribution_thick, _extra=_extra_plot)
; Update axis properties to have text if needed and appropriate side (0=bottom, 1=left, 2=top, 3=right)
if ~keyword_set(inverted) then begin
if i eq Nparam-1 then plt['axis0'].showtext = 1 else plt['axis0'].showtext = 0
if i ne 0 then begin
plt['axis1'].showtext = 0
plt['axis3'].showtext = 1
endif
endif else begin
plt['axis0'].showtext = 0
endelse
; Overplot the remaining distributions for the given parameter
for j=0, Ndist-1 do begin
if j ne 0 then plt = plot(binloc[0:(nbins[i, j]-1), i, j], pdf[0:(nbins[i, j]-1), i, j], /stair, $
/over, color=distribution_color[j], thick=distribution_thick, _extra=_extra_plot)
; Add a median line if specified in input
if keyword_set(show_median) then $
plt = plot(replicate(median(distribution[i, *, j]), 2), plt.yrange, linestyle='--', $
color=distribution_color[j], /over, thick=distribution_thick)
endfor
; Add truth value lines if specified in input
if n_elements(truths_values) gt 0 then $
plt = plot(replicate(truths_values[i], 2), plt.yrange, color=truths_color, /over)
endfor
; Plot the contour plots off of the diagonal
; i has a max of Nparam-2 due to it being off diagonal
for i=0, (Nparam-2) do begin
for j=0, (Nparam-1) do begin
if i lt j then begin
; If plot is inverted swap i and j values
if ~keyword_set(inverted) then begin
ii = i
jj = j
endif else begin
ii = j
jj = i
endelse
; Set contour plot properties and position
position_current = [position[0] + (tot_width/Nparam * ii) + (tot_width/Nparam * padding), $
position[3] - (tot_height/Nparam*(jj+1)) + (tot_height/Nparam * padding), $
position[0] + (tot_width/Nparam * (ii+1)), position[3] - (tot_height/Nparam * jj)]
if n_elements(tickinterval) gt 0 then begin
xtickinterval = tickinterval[ii]
ytickinterval = tickinterval[jj]
endif
xrange = distribution_range[*, ii]
yrange = distribution_range[*, jj]
for k=0, (Ndist-1) do begin
dist1 = distribution[ii, *, k]
dist2 = distribution[jj, *, k]
; Create a blank set of axes to plot the contours
if k eq 0 then begin
plt = plot(dist1, dist2, /current, /nodata, xtitle=distribution_labels[ii], ytitle=distribution_labels[jj], $
position=position_current, xtickfont_size=font_size, ytickfont_size=font_size, $
xrange=xrange, yrange=yrange, xtickinterval=xtickinterval, ytickinterval=ytickinterval, $
_extra=_extra_plot)
; Update axis properties to have text if needed and appropriate side (0=bottom, 1=left, 2=top, 3=right)
if ~keyword_set(inverted) then begin
; Note that i is row and j is column
if j eq Nparam-1 then plt['axis0'].showtext = 1 else plt['axis0'].showtext = 0
if i eq 0 then plt['axis1'].showtext = 1 else plt['axis1'].showtext = 0
endif else begin
plt['axis0'].showtext = 0
plt['axis1'].showtext = 0
; Note that i is now column and j is row
if i eq 0 then plt['axis2'].showtext = 1 else plt['axis2'].showtext = 0
if j eq Nparam-1 then plt['axis3'].showtext = 1 else plt['axis3'].showtext = 0
endelse
endif
; Add a median diamond if specified in input
if keyword_set(show_median) then $
x = plot(replicate(median(dist1), 2), replicate(median(dist2), 2), linestyle='', $
color=distribution_color[k], /over, symbol='o', sym_filled=1, sym_size=0.5)
; 2-D histogram the data for generating contours
h2d = dblarr(nbins[i, k], nbins[j, k])
xrange = dindgen(nbins[i, k] + 1) * (max(dist1) - min(dist1)) / (1 + nbins[i, k]) + min(dist1)
yrange = dindgen(nbins[j, k] + 1) * (max(dist2) - min(dist2)) / (1 + nbins[j, k]) + min(dist2)
h2d_xbinsize = (max(dist1) - min(dist1)) / (nbins[i, k])
h2d_ybinsize = (max(dist2) - min(dist2)) / (nbins[j, k])
for n=0, (nbins[i, k]-1) do begin
for m=0, (nbins[j, k]-1) do begin
h2d[n ,m] = n_elements(where(dist1 gt xrange[n] and dist1 lt xrange[n+1] and $
dist2 gt yrange[m] and dist2 lt yrange[m+1], /null))
endfor
endfor
; Area normalize the 2D histogram
h2d = (h2d * h2d_xbinsize * h2d_ybinsize) / total(h2d * h2d_xbinsize * h2d_ybinsize)
pmarg = h2d[reverse(sort(h2d))]
pcum = total(pmarg, /cumulative)
level = interpol(pmarg, pcum, contour_levels)
xloc = dindgen(nbins[i,k])*(max(dist1)-min(dist1))/(nbins[i,k])+min(dist1)
yloc = dindgen(nbins[j,k])*(max(dist2)-min(dist2))/(nbins[j,k])+min(dist2)
x = contour(smooth(h2d, contour_smooth), xloc, yloc, c_value=level, $
/over, color=distribution_color[k], c_label_show=0, c_thick=contour_thick)
; Add correlation values is specified by the input
if keyword_set(show_correlate) then begin
if correlate_location[k] eq 0 then begin
horiz = 0
vert = 1
align = 0
vertical_align = 0
corr_padh = correlate_padding
corr_padv = correlate_padding
endif
if correlate_location[k] eq 1 then begin
horiz = 0
vert = 3
align = 0
vertical_align = 1
corr_padh = correlate_padding
corr_padv = -1.d0*correlate_padding
endif
if correlate_location[k] eq 2 then begin
horiz = 2
vert = 3
align = 1
vertical_align = 1
corr_padh = -1.d0*correlate_padding
corr_padv = -1.d0*correlate_padding
endif
if correlate_location[k] eq 3 then begin
horiz = 2
vert = 1
align = 1
vertical_align = 0
corr_padh = -1.d0*correlate_padding
corr_padv = correlate_padding
endif
text_plt = text(position_current[horiz] + corr_padh, position_current[vert] + corr_padv, $
string(correlate(dist1, dist2), f='(f5.2)'), align=align, $
vertical_align=vertical_align, font_color=distribution_color[k])
endif
endfor
if n_elements(truths_values) gt 0 then $
x = plot([truths_values[i]], [truths_values[j]], linestyle='', symbol='D', /sym_filled, $
color=truths_color, /over, sym_size=0.5)
endif
endfor
endfor
return, plt
end