forked from SineZHAN/deepALplus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharguments.py
50 lines (39 loc) · 2.54 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import warnings
import argparse
import sys
import os
import re
import yaml
from ast import literal_eval
import copy
def get_args():
parser = argparse.ArgumentParser(description='Extended Deep Active Learning Toolkit')
#basic arguments
parser.add_argument('--ALstrategy', '-a', default='EntropySampling', type=str, help='name of active learning strategies')
parser.add_argument('--quota', '-q', default=1000, type=int, help='quota of active learning')
parser.add_argument('--batch', '-b', default=128, type=int, help='batch size in one active learning iteration')
parser.add_argument('--dataset_name', '-d', default='CIFAR10', type=str, help='dataset name')
parser.add_argument('--iteration', '-t', default=3, type=int, help='time of repeat the experiment')
parser.add_argument('--data_path', type=str, default='./../data', help='Path to where the data is')
parser.add_argument('--out_path', type=str, default='./../results', help='Path to where the output log will be')
parser.add_argument('--log_name', type=str, default='test.log', help='middle outputs')
#parser.add_argument('--help', '-h', default=False, action='store_true', help='verbose')
parser.add_argument('--cuda', action='store_true', help='If training is to be done on a GPU')
#parser.add_argument('--model', '-m', default='ResNet18', type=str, help='model name')
parser.add_argument('--initseed', '-s', default = 1000, type = int, help = 'Initial pool of labeled data')
parser.add_argument('--gpu', '-g', default = 0, type = str, help = 'which gpu')
parser.add_argument('--seed', default=4666, type=int, help='random seed')
# lpl
parser.add_argument('--lpl_epoches', type=int, default=20, help='lpl epoch num after detach')
# ceal
parser.add_argument('--delta', type=float, default=5 * 1e-5, help='value of delta in ceal sampling')
#hyper parameters
parser.add_argument('--train_epochs', type=int, default=100, help='Number of training epochs')
#specific parameters
parser.add_argument('--latent_dim', type=int, default=32, help='The dimensionality of the VAE latent dimension')
parser.add_argument('--beta', type=float, default=1, help='Hyperparameter for training. The parameter for VAE')
parser.add_argument('--num_adv_steps', type=int, default=1, help='Number of adversary steps taken for every task model step')
parser.add_argument('--num_vae_steps', type=int, default=2, help='Number of VAE steps taken for every task model step')
parser.add_argument('--adversary_param', type=float, default=1, help='Hyperparameter for training. lambda2 in the paper')
args = parser.parse_args()
return args