-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_gimme.py
116 lines (99 loc) · 4.31 KB
/
run_gimme.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
import sys
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
from utils import tab2fasta, rotate_image, meme_path
def run_gimme(tf, user_motif, chip_seq_list, results_path, figure=False):
files_path = '%s/%s' % (results_path, tf)
gimme_in = "%s/%s_gimme_metrics.txt" % (results_path, tf)
gimme_out = "%s/%s.gimme" % (results_path, tf)
for chip_seq in chip_seq_list:
file_name = chip_seq.split('/')[-1].split('.')[0]
tab2fasta(chip_seq, '%s/%s.fa' % (results_path, file_name), '%s/%s.bg' % (results_path, file_name))
gimme_mot = '%s/%s.motif' % (results_path, tf)
meme2gimme(user_motif, gimme_mot)
os.system("%s/gimme roc %s %s/%s.fa %s/%s.bg >>%s/%s_gimme_metrics.txt" %
(meme_path, gimme_mot, results_path, file_name, results_path, file_name, results_path, tf))
# import glob
# for i in glob.glob('tmp/*'):
# os.remove(i)
if figure:
plot_histogram_gimme(gimme_in, gimme_out, "%s/%s_gimme.png" % (results_path, tf))
plot_histogram_gimme(gimme_in, gimme_out, "%s/%s_gimme.eps" % (results_path, tf))
rotate_image("%s/%s_gimme.png" % (results_path, tf), "%s/%s_gimme_rot.png" % (results_path, tf))
def clean_gimme(gimme_in, gimme_out):
"""
Function that cleans the GIMME output for the purpose of plotting the data
"""
with open(gimme_in) as gim:
with open(gimme_out, 'w') as outs:
outs.write("Motif ROC AUC MNCP Enr. at 5% FDR Max enr. Recall at 10% FDR\n")
for line in gim:
if line.startswith("Motif"):
continue
else:
outs.write(line)
def plot_histogram_gimme(gimme_in, gimme_out, figure_out):
"""
This function plots all the assess motifs output on a single plot and
sorts the data based on a statistical function used.
The function could be modified for flexibility in that it can be used
to generate both plotly and seaborn figures. Also, a choice of the
statistical tool used for sorting the data can be added through the
parameters.
"""
clean_gimme(gimme_in, gimme_out)
gimme = pd.read_table(gimme_out)
new_gimme = pd.pivot_table(gimme, index=['Motif'])
new_gimme = new_gimme.sort(columns="ROC AUC", axis=0, ascending=False)
labels = new_gimme.index
x = 10
if len(labels) > 50:
x = 15
elif len(labels) < 10:
x = 5
f, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(x, 10), sharex=True)
a = sns.barplot(x=labels, y=new_gimme["ROC AUC"],
palette='colorblind', x_order=labels, ax=ax1)
b = sns.barplot(x=labels, y=new_gimme["MNCP"],
palette="colorblind", x_order=labels, ax=ax2)
c = sns.barplot(x=labels, y=new_gimme["Enr. at 5% FDR"],
palette="colorblind", x_order=labels, ax=ax3)
d = sns.barplot(x=labels, y=new_gimme["Max enr."],
palette="colorblind", x_order=labels, ax=ax4)
e = sns.barplot(x=labels, y=new_gimme["Recall at 10% FDR"],
palette="colorblind", x_order=labels, ax=ax4)
d.set_xticklabels(labels, rotation=90)
sns.despine()
f.savefig(figure_out, bbox_inches='tight')
def meme2gimme(meme, gimme):
with open(meme) as motif:
with open(gimme, 'w') as gmotif:
for line in motif:
if line.startswith("MOTIF"):
if len(line.split(" ")) > 2:
gmotif.write(">"+line.split(" ")[1]+"\n")
else:
gmotif.write(">"+line.split(" ")[1])
elif line.startswith('letter-probability'):
continue
elif line.startswith(' '):
a = line.split()
if len(a) > 0:
gmotif.write(a[0]+'\t'+a[1]+'\t'+a[2]+'\t'+a[3]+'\n')
else:
continue
elif line.startswith("\n"):
continue
else:
continue
if __name__ == '__main__':
if len(sys.argv) < 5:
print __doc__
sys.exit(1)
tf = sys.argv[1]
chip_seq_list = sys.argv[2]
test_meme_input = sys.argv[3]
results_path = sys.argv[4]
run_gimme(tf, test_meme_input, chip_seq_list, results_path)