-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathtrainingAndTesting.m
605 lines (496 loc) · 28.1 KB
/
trainingAndTesting.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
%% feature train & test %%
% clear all;
% featuresCASIA = feature_CASIA( 'distortion', 'glcm', 'lbpU8' );
% featuresMSU = feature_MSU( 'distortion', 'glcm', 'lbpU8' );
% distortion: 115, glcm: 12, visualRhythmHori: 3600, lbpU8: 59,
% lbpU8Fourier: 59, lbpU16: 243
%
%% init
numFrames = 30;
%% CASE 1 - only MSU Features
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- REPLAY
% JPG replay
MSU_TrainData = [featuresMSU.trainGenuine; featuresMSU.trainReplay; ];
MSU_TestData = [featuresMSU.testGenuine; featuresMSU.testReplay; ];
% DW replay
MSU_TrainDataDW = [featuresMSUDWLBP.trainGenuine; featuresMSUDWLBP.trainReplay;];
MSU_TestDataDW = [featuresMSUDWLBP.testGenuine; featuresMSUDWLBP.testReplay;];
% ppm replay
MSU_TrainDataPPM = [featuresMSUPPM.trainGenuine; featuresMSUPPM.trainReplay;];
MSU_TestDataPPM = [featuresMSUPPM.testGenuine; featuresMSUPPM.testReplay;];
% Label replay
MSU_TrainLabel = [1*ones(size(featuresMSU.trainGenuine, 1), 1); -1*ones(size(featuresMSU.trainReplay, 1), 1)];
MSU_TestLabel = [1*ones(size(featuresMSU.testGenuine, 1), 1); -1*ones(size(featuresMSU.testReplay, 1), 1)];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- PRINTED
% JPG print
MSU_TrainData = [featuresMSU.trainGenuine; featuresMSU.trainPrinted];
MSU_TestData = [featuresMSU.testGenuine; featuresMSU.testPrinted];
% DW print
MSU_TrainDataDW = [featuresMSUDWLBP.trainGenuine; featuresMSUDWLBP.trainPrinted];
MSU_TestDataDW = [featuresMSUDWLBP.testGenuine; featuresMSUDWLBP.testPrinted];
% ppm print
MSU_TrainDataPPM = [featuresMSUPPM.trainGenuine; featuresMSUPPM.trainPrinted];
MSU_TestDataPPM = [featuresMSUPPM.testGenuine; featuresMSUPPM.testPrinted];
% Label print
MSU_TrainLabel = [ones(size(featuresMSU.trainGenuine, 1), 1); -1*ones(size(featuresMSU.trainPrinted, 1), 1)];
MSU_TestLabel = [ones(size(featuresMSU.testGenuine, 1), 1); -1*ones(size(featuresMSU.testPrinted, 1), 1)];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- REPLAY + PRINTED
% JPG replay + print
MSU_TrainData = [featuresMSU.trainGenuine; featuresMSU.trainReplay; featuresMSU.trainPrinted];
MSU_TestData = [featuresMSU.testGenuine; featuresMSU.testReplay; featuresMSU.testPrinted];
% DW replay + print
MSU_TrainDataDW = [featuresMSUDWLBP.trainGenuine; featuresMSUDWLBP.trainReplay; featuresMSUDWLBP.trainPrinted];
MSU_TestDataDW = [featuresMSUDWLBP.testGenuine; featuresMSUDWLBP.testReplay; featuresMSUDWLBP.testPrinted];
% ppm replay + print
MSU_TrainDataPPM = [featuresMSUPPM.trainGenuine; featuresMSUPPM.trainReplay; featuresMSUPPM.trainPrinted];
MSU_TestDataPPM = [featuresMSUPPM.testGenuine; featuresMSUPPM.testReplay; featuresMSUPPM.testPrinted];
% Label replay + print
MSU_TrainLabel = [ones(size(featuresMSU.trainGenuine, 1), 1); -1*ones(size(featuresMSU.trainReplay, 1), 1); -1*ones(size(featuresMSU.trainPrinted, 1), 1)];
MSU_TestLabel = [ones(size(featuresMSU.testGenuine, 1), 1); -1*ones(size(featuresMSU.testReplay, 1), 1); -1*ones(size(featuresMSU.testPrinted, 1), 1)];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% jpg (dis, glcm, lbp)
MSU_TrainDistortion = MSU_TrainData(:, 1:115);
MSU_TrainGlcm = MSU_TrainData(:, 116:203);
MSU_TrainLBP = MSU_TrainData(:, 204:1036);
MSU_TestDistortion = MSU_TestData(:, 1:115);
MSU_TestGlcm = MSU_TestData(:, 116:203);
MSU_TestLBP = MSU_TestData(:, 204:1036);
%dw (lbp)
MSU_TrainDW = MSU_TrainDataDW(:, 1:833);
MSU_TestDW = MSU_TestDataDW(:, 1:833);
%ppm (dis, glcm, lbp)
MSU_TrainDistortionPPM = MSU_TrainDataPPM(:, 1:115);
MSU_TrainGlcmPPM = MSU_TrainDataPPM(:, 116:203);
MSU_TrainLBPPPM = MSU_TrainDataPPM(:, 204:1036);
MSU_TestDistortionPPM = MSU_TestDataPPM(:, 1:115);
MSU_TestGlcmPPM = MSU_TestDataPPM(:, 116:203);
MSU_TestLBPPPM = MSU_TestDataPPM(:, 204:1036);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% distortion features normalization
[MSU_TrainDistortion MSU_FeaturesMu MSU_FeaturesStddev ]= featureNormalize(MSU_TrainDistortion);
MSU_TestDistortion = featureNormalizeForTesting(MSU_TestDistortion, MSU_FeaturesMu, MSU_FeaturesStddev);
% glcm features normalization
[MSU_TrainGlcm MSU_FeaturesMu MSU_FeaturesStddev ]= featureNormalize(MSU_TrainGlcm);
MSU_TestGlcm = featureNormalizeForTesting(MSU_TestGlcm, MSU_FeaturesMu, MSU_FeaturesStddev);
% LBP normalization
[MSU_TrainLBP MSU_FeaturesMu MSU_FeaturesStddev ]= featureNormalize(MSU_TrainLBP);
MSU_TestLBP = featureNormalizeForTesting(MSU_TestLBP, MSU_FeaturesMu, MSU_FeaturesStddev);
% DW normaization
[MSU_TrainDW MSU_FeaturesMu MSU_FeaturesStddev ]= featureNormalize(MSU_TrainDW);
MSU_TestDW = featureNormalizeForTesting(MSU_TestDW, MSU_FeaturesMu, MSU_FeaturesStddev);
% ppm normaization
[MSU_TrainDistortionPPM MSU_FeaturesMu MSU_FeaturesStddev ]= featureNormalize(MSU_TrainDistortionPPM);
MSU_TestDistortionPPM = featureNormalizeForTesting(MSU_TestDistortionPPM, MSU_FeaturesMu, MSU_FeaturesStddev);
[MSU_TrainGlcmPPM MSU_FeaturesMu MSU_FeaturesStddev ]= featureNormalize(MSU_TrainGlcmPPM);
MSU_TestGlcmPPM = featureNormalizeForTesting(MSU_TestGlcmPPM, MSU_FeaturesMu, MSU_FeaturesStddev);
[MSU_TrainLBPPPM MSU_FeaturesMu MSU_FeaturesStddev ]= featureNormalize(MSU_TrainLBPPPM);
MSU_TestLBPPPM = featureNormalizeForTesting(MSU_TestLBPPPM, MSU_FeaturesMu, MSU_FeaturesStddev);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 1. JPG: dis + glcm //
MSU_TrainData = [MSU_TrainDistortion MSU_TrainGlcm];
MSU_TestData = [MSU_TestDistortion MSU_TestGlcm];
% 2. jpg: dis// ppm: LBP
MSU_TrainData = [MSU_TrainDistortion MSU_TrainLBPPPM];
MSU_TestData = [MSU_TestDistortion MSU_TestLBPPPM];
% 3. jpg: dis // DW: LBP
MSU_TrainData = [MSU_TrainDistortion MSU_TrainDW];
MSU_TestData = [MSU_TestDistortion MSU_TestDW];
% 4. jpg: dis + glcm // ppm: LBP
MSU_TrainData = [MSU_TrainDistortion MSU_TrainGlcm MSU_TrainLBPPPM];
MSU_TestData = [MSU_TestDistortion MSU_TestGlcm MSU_TestLBPPPM];
% 5. jpg: dis + glcm // DW: LBP
MSU_TrainData = [MSU_TrainDistortion MSU_TrainGlcm MSU_TrainDW];
MSU_TestData = [MSU_TestDistortion MSU_TestGlcm MSU_TestDW];
% 6. DW: lbp // ppm: LBP
MSU_TrainData = [MSU_TrainDW MSU_TrainLBPPPM ];
MSU_TestData = [MSU_TestDW MSU_TestLBPPPM];
% 7. JPG: lbp // DW: LBP // PPM: LBP
MSU_TrainData = [MSU_TrainLBP MSU_TrainDW MSU_TrainLBPPPM ];
MSU_TestData = [MSU_TestLBP MSU_TestDW MSU_TestLBPPPM];
% 8. JPG: dis + LBP // PPM: LBP // DW: LBP
MSU_TrainData = [MSU_TrainDistortion MSU_TrainLBP MSU_TrainLBPPPM MSU_TrainDW];
MSU_TestData = [MSU_TestDistortion MSU_TestLBP MSU_TestLBPPPM MSU_TestDW];
% 9. JPG: dis + LBP
MSU_TrainData = [MSU_TrainDistortion MSU_TrainLBP];
MSU_TestData = [MSU_TestDistortion MSU_TestLBP];
% 10. JPG: LBP
MSU_TrainData = [MSU_TrainLBP];
MSU_TestData = [MSU_TestLBP];
% linear SVM
MSU_Model_1 = svmtrain(MSU_TrainLabel, MSU_TrainData, '-c 0.5000 -g 0.0313 -t 2');
[MSU_predict_label_1, MSU_accuracy_1, MSU_dec_values1] = svmpredict(MSU_TestLabel, MSU_TestData, MSU_Model_1);
MSU_Model_2 = svmtrain(MSU_TrainLabel, MSU_TrainData, '-c 2 -g 0.0313 -t 2');
[MSU_predict_label_2, MSU_accuracy_2, MSU_dec_values2] = svmpredict(MSU_TestLabel, MSU_TestData, MSU_Model_2);
MSU_Model_3 = svmtrain(MSU_TrainLabel, MSU_TrainData, '-c 128 -g 0.0000991 -t 2');
[MSU_predict_label_3, MSU_accuracy_3, MSU_dec_values3] = svmpredict(MSU_TestLabel, MSU_TestData, MSU_Model_3);
MSU_Model_4 = svmtrain(MSU_TrainLabel, MSU_TrainData, '-c 330 -g 0.00099 -t 2');
[MSU_predict_label_4, MSU_accuracy_4, MSU_dec_values4] = svmpredict(MSU_TestLabel, MSU_TestData, MSU_Model_4);
MSU_Model_5 = svmtrain(MSU_TrainLabel, MSU_TrainData, '-c 220 -g 0.000097 -t 2');
[MSU_predict_label_5, MSU_accuracy_5, MSU_dec_values5] = svmpredict(MSU_TestLabel, MSU_TestData, MSU_Model_5);
MSU_Model_6 = svmtrain(MSU_TrainLabel, MSU_TrainData, '-c 195 -g 0.00139-t 2');
[MSU_predict_label_6, MSU_accuracy_6, MSU_dec_values6] = svmpredict(MSU_TestLabel, MSU_TestData, MSU_Model_6);
% nogada
MSU_Model_5 = svmtrain(MSU_TrainLabel, MSU_TrainData, '-c 0.353553390593274 -g 0.000976562500000000 -t 2');
[MSU_predict_label_5, MSU_accuracy_5, MSU_dec_values5] = svmpredict(MSU_TestLabel, MSU_TestData, MSU_Model_5);
% HTER
MSU_predict_label = MSU_predict_label_5;
[acc HTER ] = getHTER( MSU_predict_label, MSU_TestLabel, numFrames);
% ROC
MSU_dec_values = MSU_dec_values5;
[X, Y, T, AUC] = perfcurve(MSU_TestLabel, MSU_dec_values, 1);
AUC
figure
plot(X,Y)
% set(gca, 'XTick', [0.0001 : 0.1 : 10])
% axis([0 10 0 1])
xlabel('False positive rate')
ylabel('True positive rate')
%title('ROC for Classification by Logistic Regression')
for i = 1 : size(X, 1),
if X(i) == 0.01,
fprintf('Y: %f \n', Y(i));
end
end
%ERR
MSU_dec_values = MSU_dec_values5;
[X, Y, T, AUC] = perfcurve(MSU_TestLabel, MSU_dec_values, 1, 'XCrit', 'fpr', 'Ycrit', 'fnr');
AUC
figure
plot(X,Y)
% set(gca, 'XTick', [0.0001 : 0.1 : 10])
% axis([0 10 0 1])
xlabel('False positive rate')
ylabel('False negative rate')
%title('ROC for Classification by Logistic Regression')
for i = 1 : size(X, 1),
if X(i) == Y(i),
fprintf('X: %f Y: %f \n', X(i), Y(i));
end
end
% auto find parameter numFrames= 30
[ resultAuto ] = findParameter( MSU_TrainLabel, MSU_TrainData, MSU_TestLabel, MSU_TestData, numFrames, 'A' );
% auto find parameter Fine
[ resultAutoFine ] = findParameterFine( MSU_TrainLabel, MSU_TrainData, MSU_TestLabel, MSU_TestData, numFrames, 0, 0, 0, 0 );
%% case2 - only CASIA Features
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- REPLAY
% JPG replay
CASIA_TrainData = [featuresCASIA.trainGenuine; featuresCASIA.trainReplay; ];
CASIA_TestData = [featuresCASIA.testGenuine; featuresCASIA.testReplay; ];
% DW replay
CASIA_TrainDataDW = [featuresCASIADWLBP.trainGenuine; featuresCASIADWLBP.trainReplay;];
CASIA_TestDataDW = [featuresCASIADWLBP.testGenuine; featuresCASIADWLBP.testReplay;];
% ppm replay
CASIA_TrainDataPPM = [featuresCASIAPPM.trainGenuine; featuresCASIAPPM.trainReplay;];
CASIA_TestDataPPM = [featuresCASIAPPM.testGenuine; featuresCASIAPPM.testReplay;];
% Label replay
CASIA_TrainLabel = [1*ones(size(featuresCASIA.trainGenuine, 1), 1); -1*ones(size(featuresCASIA.trainReplay, 1), 1)];
CASIA_TestLabel = [1*ones(size(featuresCASIA.testGenuine, 1), 1); -1*ones(size(featuresCASIA.testReplay, 1), 1)];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- PRINTED
% JPG print
CASIA_TrainData = [featuresCASIA.trainGenuine; featuresCASIA.trainPrinted];
CASIA_TestData = [featuresCASIA.testGenuine; featuresCASIA.testPrinted];
% DW print
CASIA_TrainDataDW = [featuresCASIADWLBP.trainGenuine; featuresCASIADWLBP.trainPrinted];
CASIA_TestDataDW = [featuresCASIADWLBP.testGenuine; featuresCASIADWLBP.testPrinted];
% ppm print
CASIA_TrainDataPPM = [featuresCASIAPPM.trainGenuine; featuresCASIAPPM.trainPrinted];
CASIA_TestDataPPM = [featuresCASIAPPM.testGenuine; featuresCASIAPPM.testPrinted];
% Label print
CASIA_TrainLabel = [ones(size(featuresCASIA.trainGenuine, 1), 1); -1*ones(size(featuresCASIA.trainPrinted, 1), 1)];
CASIA_TestLabel = [ones(size(featuresCASIA.testGenuine, 1), 1); -1*ones(size(featuresCASIA.testPrinted, 1), 1)];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- REPLAY + PRINTED
% JPG replay + print
CASIA_TrainData = [featuresCASIA.trainGenuine; featuresCASIA.trainReplay; featuresCASIA.trainPrinted];
CASIA_TestData = [featuresCASIA.testGenuine; featuresCASIA.testReplay; featuresCASIA.testPrinted];
% DW replay + print
CASIA_TrainDataDW = [featuresCASIADWLBP.trainGenuine; featuresCASIADWLBP.trainReplay; featuresCASIADWLBP.trainPrinted];
CASIA_TestDataDW = [featuresCASIADWLBP.testGenuine; featuresCASIADWLBP.testReplay; featuresCASIADWLBP.testPrinted];
% ppm replay + print
CASIA_TrainDataPPM = [featuresCASIAPPM.trainGenuine; featuresCASIAPPM.trainReplay; featuresCASIAPPM.trainPrinted];
CASIA_TestDataPPM = [featuresCASIAPPM.testGenuine; featuresCASIAPPM.testReplay; featuresCASIAPPM.testPrinted];
% Label replay + print
CASIA_TrainLabel = [ones(size(featuresCASIA.trainGenuine, 1), 1); -1*ones(size(featuresCASIA.trainReplay, 1), 1); -1*ones(size(featuresCASIA.trainPrinted, 1), 1)];
CASIA_TestLabel = [ones(size(featuresCASIA.testGenuine, 1), 1); -1*ones(size(featuresCASIA.testReplay, 1), 1); -1*ones(size(featuresCASIA.testPrinted, 1), 1)];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% jpg (dis, glcm, lbp)
CASIA_TrainDistortion = CASIA_TrainData(:, 1:115);
CASIA_TrainGlcm = CASIA_TrainData(:, 116:203);
CASIA_TrainLBP = CASIA_TrainData(:, 204:1036);
CASIA_TestDistortion = CASIA_TestData(:, 1:115);
CASIA_TestGlcm = CASIA_TestData(:, 116:203);
CASIA_TestLBP = CASIA_TestData(:, 204:1036);
%dw (lbp)
CASIA_TrainDW = CASIA_TrainDataDW(:, 1:833);
CASIA_TestDW = CASIA_TestDataDW(:, 1:833);
%ppm (dis, glcm, lbp)
CASIA_TrainDistortionPPM = CASIA_TrainDataPPM(:, 1:115);
CASIA_TrainGlcmPPM = CASIA_TrainDataPPM(:, 116:203);
CASIA_TrainLBPPPM = CASIA_TrainDataPPM(:, 204:1036);
CASIA_TestDistortionPPM = CASIA_TestDataPPM(:, 1:115);
CASIA_TestGlcmPPM = CASIA_TestDataPPM(:, 116:203);
CASIA_TestLBPPPM = CASIA_TestDataPPM(:, 204:1036);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% distortion features normalization
[CASIA_TrainDistortion CASIA_FeaturesMu CASIA_FeaturesStddev ]= featureNormalize(CASIA_TrainDistortion);
CASIA_TestDistortion = featureNormalizeForTesting(CASIA_TestDistortion, CASIA_FeaturesMu, CASIA_FeaturesStddev);
% glcm features normalization
[CASIA_TrainGlcm CASIA_FeaturesMu CASIA_FeaturesStddev ]= featureNormalize(CASIA_TrainGlcm);
CASIA_TestGlcm = featureNormalizeForTesting(CASIA_TestGlcm, CASIA_FeaturesMu, CASIA_FeaturesStddev);
% LBP normalization
[CASIA_TrainLBP CASIA_FeaturesMu CASIA_FeaturesStddev ]= featureNormalize(CASIA_TrainLBP);
CASIA_TestLBP = featureNormalizeForTesting(CASIA_TestLBP, CASIA_FeaturesMu, CASIA_FeaturesStddev);
% DW normaization
[CASIA_TrainDW CASIA_FeaturesMu CASIA_FeaturesStddev ]= featureNormalize(CASIA_TrainDW);
CASIA_TestDW = featureNormalizeForTesting(CASIA_TestDW, CASIA_FeaturesMu, CASIA_FeaturesStddev);
% ppm normaization
[CASIA_TrainDistortionPPM CASIA_FeaturesMu CASIA_FeaturesStddev ]= featureNormalize(CASIA_TrainDistortionPPM);
CASIA_TestDistortionPPM = featureNormalizeForTesting(CASIA_TestDistortionPPM, CASIA_FeaturesMu, CASIA_FeaturesStddev);
[CASIA_TrainGlcmPPM CASIA_FeaturesMu CASIA_FeaturesStddev ]= featureNormalize(CASIA_TrainGlcmPPM);
CASIA_TestGlcmPPM = featureNormalizeForTesting(CASIA_TestGlcmPPM, CASIA_FeaturesMu, CASIA_FeaturesStddev);
[CASIA_TrainLBPPPM CASIA_FeaturesMu CASIA_FeaturesStddev ]= featureNormalize(CASIA_TrainLBPPPM);
CASIA_TestLBPPPM = featureNormalizeForTesting(CASIA_TestLBPPPM, CASIA_FeaturesMu, CASIA_FeaturesStddev);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 1. JPG: dis + glcm //
CASIA_TrainData = [CASIA_TrainDistortion CASIA_TrainGlcm];
CASIA_TestData = [CASIA_TestDistortion CASIA_TestGlcm];
% 2. jpg: dis// ppm: LBP
CASIA_TrainData = [CASIA_TrainDistortion CASIA_TrainLBPPPM];
CASIA_TestData = [CASIA_TestDistortion CASIA_TestLBPPPM];
% 3. jpg: dis // DW: LBP
CASIA_TrainData = [CASIA_TrainDistortion CASIA_TrainDW];
CASIA_TestData = [CASIA_TestDistortion CASIA_TestDW];
% 4. jpg: dis + glcm // ppm: LBP
CASIA_TrainData = [CASIA_TrainDistortion CASIA_TrainGlcm CASIA_TrainLBPPPM];
CASIA_TestData = [CASIA_TestDistortion CASIA_TestGlcm CASIA_TestLBPPPM];
% 5. jpg: dis + glcm // DW: LBP
CASIA_TrainData = [CASIA_TrainDistortion CASIA_TrainGlcm CASIA_TrainDW];
CASIA_TestData = [CASIA_TestDistortion CASIA_TestGlcm CASIA_TestDW];
% 6. DW: lbp // ppm: LBP
CASIA_TrainData = [CASIA_TrainDW CASIA_TrainLBPPPM ];
CASIA_TestData = [CASIA_TestDW CASIA_TestLBPPPM];
% 7. JPG: lbp // DW: LBP // PPM: LBP
CASIA_TrainData = [CASIA_TrainLBP CASIA_TrainDW CASIA_TrainLBPPPM ];
CASIA_TestData = [CASIA_TestLBP CASIA_TestDW CASIA_TestLBPPPM];
% 8. JPG: dis + LBP // PPM: LBP // DW: LBP
CASIA_TrainData = [CASIA_TrainDistortion CASIA_TrainLBP CASIA_TrainLBPPPM CASIA_TrainDW];
CASIA_TestData = [CASIA_TestDistortion CASIA_TestLBP CASIA_TestLBPPPM CASIA_TestDW];
% 9. JPG: dis + LBP
CASIA_TrainData = [CASIA_TrainDistortion CASIA_TrainLBP];
CASIA_TestData = [CASIA_TestDistortion CASIA_TestLBP];
% linear SVM
% Accuracy = 79.5222% (7157/9000) (classification) [ cut 25´Â ´õ ¶³¾îÁü], [glcm normalization, 82.9778%]
CASIA_Model_1 = svmtrain(CASIA_TrainLabel, CASIA_TrainData, '-c 1 -g 0.09 -t 2');
[CASIA_predict_label_1, CASIA_accuracy_1, CASIA_dec_values1] = svmpredict(CASIA_TestLabel, CASIA_TestData, CASIA_Model_1);
CASIA_Model_2 = svmtrain(CASIA_TrainLabel, CASIA_TrainData, '-c 50 -g 0.0028125 -t 2');
[CASIA_predict_label_2, CASIA_accuracy_2, CASIA_dec_values2] = svmpredict(CASIA_TestLabel, CASIA_TestData, CASIA_Model_2);
CASIA_Model_3 = svmtrain(CASIA_TrainLabel, CASIA_TrainData, '-c 10 -g 0.0091 -t 2');
[CASIA_predict_label_3, CASIA_accuracy_3, CASIA_dec_values3] = svmpredict(CASIA_TestLabel, CASIA_TestData, CASIA_Model_3);
CASIA_Model_4 = svmtrain(CASIA_TrainLabel, CASIA_TrainData, '-c 32 -g 0.1250 -t 2');
[CASIA_predict_label_4, CASIA_accuracy_4, CASIA_dec_values4] = svmpredict(CASIA_TestLabel, CASIA_TestData, CASIA_Model_4);
CASIA_Model_5 = svmtrain(CASIA_TrainLabel, CASIA_TrainData, '-c 40 -g 0.0098425 -t 2');
[CASIA_predict_label_5, CASIA_accuracy_5, CASIA_dec_values5] = svmpredict(CASIA_TestLabel, CASIA_TestData, CASIA_Model_5);
% nogada
CASIA_Model_5 = svmtrain(CASIA_TrainLabel, CASIA_TrainData);
[CASIA_predict_label_5, CASIA_accuracy_5, CASIA_dec_values5] = svmpredict(CASIA_TestLabel, CASIA_TestData, CASIA_Model_5);
CASIA_Model_Print = svmtrain(CASIA_TrainLabel, CASIA_TrainData, '-c 16 -g 0.000244140625000000');
[CASIA_predict_label_Print, CASIA_accuracy_Print, CASIA_dec_valuesPrint] = svmpredict(CASIA_TestLabel, CASIA_TestData, CASIA_Model_Print);
% HTER numFrames = 30
CASIA_predict_label = CASIA_predict_label_Print;
[acc HTER ]= getHTER( CASIA_predict_label, CASIA_TestLabel, numFrames);
% ROC
CASIA_dec_values = CASIA_dec_values5;
[X, Y, T, AUC] = perfcurve(CASIA_TestLabel, CASIA_dec_values, 1);
AUC
figure
plot(X,Y)
% set(gca, 'XTick', [0.0001 : 0.1 : 10])
% axis([0 10 0 1])
xlabel('False positive rate')
ylabel('True positive rate')
%title('ROC for Classification by Logistic Regression')
for i = 1 : size(X, 1),
if X(i) == 0.01,
fprintf('Y: %f \n', Y(i));
end
end
%ERR
CASIA_dec_values = CASIA_dec_values5;
[X, Y, T, AUC] = perfcurve(CASIA_TestLabel, CASIA_dec_values, 1, 'XCrit', 'fpr', 'Ycrit', 'fnr');
AUC
figure
plot(X,Y)
% set(gca, 'XTick', [0.0001 : 0.1 : 10])
% axis([0 10 0 1])
xlabel('False positive rate')
ylabel('False negative rate')
%title('ROC for Classification by Logistic Regression')
for i = 1 : size(X, 1),
if X(i) == Y(i),
fprintf('X: %f Y: %f \n', X(i), Y(i));
end
end
% auto find parameter
[ resultAuto ] = findParameter( CASIA_TrainLabel, CASIA_TrainData, CASIA_TestLabel, CASIA_TestData, numFrames, 'A' );
% auto find parameter Fine
[ resultAutoFine ] = findParameterFine( CASIA_TrainLabel, CASIA_TrainData, CASIA_TestLabel, CASIA_TestData, numFrames, 0, 0, 0, 0 );
%% case 3 - only Idiap Features
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- REPLAY
% JPG replay
Idiap_TrainData = [featuresIdiap.trainGenuine; featuresIdiap.trainReplay; ];
Idiap_TestData = [featuresIdiap.testGenuine; featuresIdiap.testReplay; ];
% DW replay
Idiap_TrainDataDW = [featuresIdiapDWLBP.trainGenuine; featuresIdiapDWLBP.trainReplay;];
Idiap_TestDataDW = [featuresIdiapDWLBP.testGenuine; featuresIdiapDWLBP.testReplay;];
% ppm replay
Idiap_TrainDataPPM = [featuresIdiapPPM.trainGenuine; featuresIdiapPPM.trainReplay;];
Idiap_TestDataPPM = [featuresIdiapPPM.testGenuine; featuresIdiapPPM.testReplay;];
% Label replay
Idiap_TrainLabel = [1*ones(size(featuresIdiap.trainGenuine, 1), 1); -1*ones(size(featuresIdiap.trainReplay, 1), 1)];
Idiap_TestLabel = [1*ones(size(featuresIdiap.testGenuine, 1), 1); -1*ones(size(featuresIdiap.testReplay, 1), 1)];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- PRINTED
% JPG print
Idiap_TrainData = [featuresIdiap.trainGenuine; featuresIdiap.trainPrinted];
Idiap_TestData = [featuresIdiap.testGenuine; featuresIdiap.testPrinted];
% DW print
Idiap_TrainDataDW = [featuresIdiapDWLBP.trainGenuine; featuresIdiapDWLBP.trainPrinted];
Idiap_TestDataDW = [featuresIdiapDWLBP.testGenuine; featuresIdiapDWLBP.testPrinted];
% ppm print
Idiap_TrainDataPPM = [featuresIdiapPPM.trainGenuine; featuresIdiapPPM.trainPrinted];
Idiap_TestDataPPM = [featuresIdiapPPM.testGenuine; featuresIdiapPPM.testPrinted];
% Label print
Idiap_TrainLabel = [ones(size(featuresIdiap.trainGenuine, 1), 1); -1*ones(size(featuresIdiap.trainPrinted, 1), 1)];
Idiap_TestLabel = [ones(size(featuresIdiap.testGenuine, 1), 1); -1*ones(size(featuresIdiap.testPrinted, 1), 1)];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- REPLAY + PRINTED
% JPG replay + print
Idiap_TrainData = [featuresIdiap.trainGenuine; featuresIdiap.trainReplay; featuresIdiap.trainPrinted];
Idiap_TestData = [featuresIdiap.testGenuine; featuresIdiap.testReplay; featuresIdiap.testPrinted];
% DW replay + print
Idiap_TrainDataDW = [featuresIdiapDWLBP.trainGenuine; featuresIdiapDWLBP.trainReplay; featuresIdiapDWLBP.trainPrinted];
Idiap_TestDataDW = [featuresIdiapDWLBP.testGenuine; featuresIdiapDWLBP.testReplay; featuresIdiapDWLBP.testPrinted];
% ppm replay + print
Idiap_TrainDataPPM = [featuresIdiapPPM.trainGenuine; featuresIdiapPPM.trainReplay; featuresIdiapPPM.trainPrinted];
Idiap_TestDataPPM = [featuresIdiapPPM.testGenuine; featuresIdiapPPM.testReplay; featuresIdiapPPM.testPrinted];
% Label replay + print
Idiap_TrainLabel = [ones(size(featuresIdiap.trainGenuine, 1), 1); -1*ones(size(featuresIdiap.trainReplay, 1), 1); -1*ones(size(featuresIdiap.trainPrinted, 1), 1)];
Idiap_TestLabel = [ones(size(featuresIdiap.testGenuine, 1), 1); -1*ones(size(featuresIdiap.testReplay, 1), 1); -1*ones(size(featuresIdiap.testPrinted, 1), 1)];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% jpg (dis, glcm, lbp)
Idiap_TrainDistortion = Idiap_TrainData(:, 1:115);
Idiap_TrainGlcm = Idiap_TrainData(:, 116:203);
Idiap_TrainLBP = Idiap_TrainData(:, 204:1036);
Idiap_TestDistortion = Idiap_TestData(:, 1:115);
Idiap_TestGlcm = Idiap_TestData(:, 116:203);
Idiap_TestLBP = Idiap_TestData(:, 204:1036);
%dw (lbp)
Idiap_TrainDW = Idiap_TrainDataDW(:, 1:833);
Idiap_TestDW = Idiap_TestDataDW(:, 1:833);
%ppm (dis, glcm, lbp)
Idiap_TrainDistortionPPM = Idiap_TrainDataPPM(:, 1:115);
Idiap_TrainGlcmPPM = Idiap_TrainDataPPM(:, 116:203);
Idiap_TrainLBPPPM = Idiap_TrainDataPPM(:, 204:1036);
Idiap_TestDistortionPPM = Idiap_TestDataPPM(:, 1:115);
Idiap_TestGlcmPPM = Idiap_TestDataPPM(:, 116:203);
Idiap_TestLBPPPM = Idiap_TestDataPPM(:, 204:1036);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% distortion features normalization
[Idiap_TrainDistortion Idiap_FeaturesMu Idiap_FeaturesStddev ]= featureNormalize(Idiap_TrainDistortion);
Idiap_TestDistortion = featureNormalizeForTesting(Idiap_TestDistortion, Idiap_FeaturesMu, Idiap_FeaturesStddev);
% glcm features normalization
[Idiap_TrainGlcm Idiap_FeaturesMu Idiap_FeaturesStddev ]= featureNormalize(Idiap_TrainGlcm);
Idiap_TestGlcm = featureNormalizeForTesting(Idiap_TestGlcm, Idiap_FeaturesMu, Idiap_FeaturesStddev);
% LBP normalization
[Idiap_TrainLBP Idiap_FeaturesMu Idiap_FeaturesStddev ]= featureNormalize(Idiap_TrainLBP);
Idiap_TestLBP = featureNormalizeForTesting(Idiap_TestLBP, Idiap_FeaturesMu, Idiap_FeaturesStddev);
% DW normaization
[Idiap_TrainDW Idiap_FeaturesMu Idiap_FeaturesStddev ]= featureNormalize(Idiap_TrainDW);
Idiap_TestDW = featureNormalizeForTesting(Idiap_TestDW, Idiap_FeaturesMu, Idiap_FeaturesStddev);
% ppm normaization
[Idiap_TrainDistortionPPM Idiap_FeaturesMu Idiap_FeaturesStddev ]= featureNormalize(Idiap_TrainDistortionPPM);
Idiap_TestDistortionPPM = featureNormalizeForTesting(Idiap_TestDistortionPPM, Idiap_FeaturesMu, Idiap_FeaturesStddev);
[Idiap_TrainGlcmPPM Idiap_FeaturesMu Idiap_FeaturesStddev ]= featureNormalize(Idiap_TrainGlcmPPM);
Idiap_TestGlcmPPM = featureNormalizeForTesting(Idiap_TestGlcmPPM, Idiap_FeaturesMu, Idiap_FeaturesStddev);
[Idiap_TrainLBPPPM Idiap_FeaturesMu Idiap_FeaturesStddev ]= featureNormalize(Idiap_TrainLBPPPM);
Idiap_TestLBPPPM = featureNormalizeForTesting(Idiap_TestLBPPPM, Idiap_FeaturesMu, Idiap_FeaturesStddev);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 1. JPG: dis + glcm //
Idiap_TrainData = [Idiap_TrainDistortion Idiap_TrainGlcm];
Idiap_TestData = [Idiap_TestDistortion Idiap_TestGlcm];
% 2. jpg: dis// ppm: LBP
Idiap_TrainData = [Idiap_TrainDistortion Idiap_TrainLBPPPM];
Idiap_TestData = [Idiap_TestDistortion Idiap_TestLBPPPM];
% 3. jpg: dis // DW: LBP
Idiap_TrainData = [Idiap_TrainDistortion Idiap_TrainDW];
Idiap_TestData = [Idiap_TestDistortion Idiap_TestDW];
% 4. jpg: dis + glcm // ppm: LBP
Idiap_TrainData = [Idiap_TrainDistortion Idiap_TrainGlcm Idiap_TrainLBPPPM];
Idiap_TestData = [Idiap_TestDistortion Idiap_TestGlcm Idiap_TestLBPPPM];
% 5. jpg: dis + glcm // DW: LBP
Idiap_TrainData = [Idiap_TrainDistortion Idiap_TrainGlcm Idiap_TrainDW];
Idiap_TestData = [Idiap_TestDistortion Idiap_TestGlcm Idiap_TestDW];
% 6. DW: lbp // ppm: LBP
Idiap_TrainData = [Idiap_TrainDW Idiap_TrainLBPPPM ];
Idiap_TestData = [Idiap_TestDW Idiap_TestLBPPPM];
% 7. JPG: lbp // DW: LBP // PPM: LBP
Idiap_TrainData = [Idiap_TrainLBP Idiap_TrainDW Idiap_TrainLBPPPM ];
Idiap_TestData = [Idiap_TestLBP Idiap_TestDW Idiap_TestLBPPPM];
% 8. JPG: dis + LBP // PPM: LBP // DW: LBP
Idiap_TrainData = [Idiap_TrainDistortion Idiap_TrainLBP Idiap_TrainLBPPPM Idiap_TrainDW];
Idiap_TestData = [Idiap_TestDistortion Idiap_TestLBP Idiap_TestLBPPPM Idiap_TestDW];
% 9. JPG: dis + LBP
Idiap_TrainData = [Idiap_TrainDistortion Idiap_TrainLBP];
Idiap_TestData = [Idiap_TestDistortion Idiap_TestLBP];
% linear SVM
Idiap_Model_1 = svmtrain(Idiap_TrainLabel, Idiap_TrainData, '-c 2 -g 0.0313 -t 2');
[Idiap_predict_label_1, Idiap_accuracy_1, Idiap_dec_values1] = svmpredict(Idiap_TestLabel, Idiap_TestData, Idiap_Model_1);
Idiap_Model_2 = svmtrain(Idiap_TrainLabel, Idiap_TrainData, '-c 32 -g 0.0313 -t 2');
[Idiap_predict_label_2, Idiap_accuracy_2, Idiap_dec_values2] = svmpredict(Idiap_TestLabel, Idiap_TestData, Idiap_Model_2);
Idiap_Model_3 = svmtrain(Idiap_TrainLabel, Idiap_TrainData, '-c 8 -g 0.0078125 -t 2');
[Idiap_predict_label_3, Idiap_accuracy_3, Idiap_dec_values3] = svmpredict(Idiap_TestLabel, Idiap_TestData, Idiap_Model_3);
Idiap_Model_4 = svmtrain(Idiap_TrainLabel, Idiap_TrainData, '-c 0.125 -g 0.0078125 -t 2');
[Idiap_predict_label_4, Idiap_accuracy_4, Idiap_dec_values4] = svmpredict(Idiap_TestLabel, Idiap_TestData, Idiap_Model_4);
Idiap_Model_5 = svmtrain(Idiap_TrainLabel, Idiap_TrainData, '-c 0.125 -g 0.0038125 -t 2');
[Idiap_predict_label_5, Idiap_accuracy_5, Idiap_dec_values5] = svmpredict(Idiap_TestLabel, Idiap_TestData, Idiap_Model_5);
Idiap_Model_6 = svmtrain(Idiap_TrainLabel, Idiap_TrainData, '-c 0.225 -g 0.00048125 -t 2');
[Idiap_predict_label_6, Idiap_accuracy_6, Idiap_dec_values6] = svmpredict(Idiap_TestLabel, Idiap_TestData, Idiap_Model_6);
% nogada
Idiap_Model_5 = svmtrain(Idiap_TrainLabel, Idiap_TrainData, '-c 0.250000000000000 -g 6.10351562500000e-05');
[Idiap_predict_label_5, Idiap_accuracy_5, Idiap_dec_values5] = svmpredict(Idiap_TestLabel, Idiap_TestData, Idiap_Model_5);
% HTER
Idiap_predict_label = Idiap_predict_label_5;
[acc HTER ] = getHTER( Idiap_predict_label, Idiap_TestLabel, numFrames);
% ROC
Idiap_dec_values = Idiap_dec_values5;
[X, Y, T, AUC] = perfcurve(Idiap_TestLabel, Idiap_dec_values, 1);
AUC
figure
plot(X,Y)
% set(gca, 'XTick', [0.0001 : 0.1 : 10])
% axis([0 10 0 1])
xlabel('False positive rate')
ylabel('True positive rate')
%title('ROC for Classification by Logistic Regression')
for i = 1 : size(X, 1),
if X(i) == 0.01,
fprintf('Y: %f \n', Y(i));
end
end
%ERR
Idiap_dec_values = Idiap_dec_values5;
[X, Y, T, AUC] = perfcurve(Idiap_TestLabel, Idiap_dec_values, 1, 'XCrit', 'fpr', 'Ycrit', 'fnr');
AUC
figure
plot(X,Y)
% set(gca, 'XTick', [0.0001 : 0.1 : 10])
% axis([0 10 0 1])
xlabel('False positive rate')
ylabel('False negative rate')
%title('ROC for Classification by Logistic Regression')
for i = 1 : size(X, 1),
if X(i) == Y(i),
fprintf('X: %f Y: %f \n', X(i), Y(i));
end
end
% auto find parameter
[ resultAuto ] = findParameter( Idiap_TrainLabel, Idiap_TrainData, Idiap_TestLabel, Idiap_TestData, numFrames, 'A' );
% auto find parameter Fine
[ resultAutoFine ] = findParameterFine( Idiap_TrainLabel, Idiap_TrainData, Idiap_TestLabel, Idiap_TestData, numFrames, 0, 0, 0, 0 );