-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathcolorDiversity.m
50 lines (36 loc) · 1.19 KB
/
colorDiversity.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
function diversityFeature = colorDiversity(I)
% profile on;
% I = imread('real.jpg');
% profile report;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 32 level quantization, range is 1 to 32
quanti = (floor( double(I) ./ 8 ) + 1);
quantiR = reshape(quanti(:, :, 1), [], 1);
quantiG = reshape(quanti(:, :, 2), [], 1);
quantiB = reshape(quanti(:, :, 3), [], 1);
quantiBin = zeros(32, 32, 32);
for i = 1 : size(quantiR, 1),
quantiBin(quantiR(i), quantiG(i), quantiB(i)) = quantiBin(quantiR(i), quantiG(i), quantiB(i)) + 1;
end
reQuantiBin = reshape(quantiBin(:, :, :), [], 1);
normBin = norm(reQuantiBin, 1);
reQuantiBin = sort( reQuantiBin ./ normBin, 'descend' );
% top 100 frequency feature ( 100 - d )
top100Freq = reQuantiBin(1 : 100);
tmpValue = -1;
distCnt = 0;
for i = 1 : size(reQuantiBin, 1),
if tmpValue ~= reQuantiBin(i),
distCnt = distCnt + 1;
tmpValue = reQuantiBin(i);
end
if tmpValue == 0,
break;
end
end
% not count 0. distCnt is distinct feature ( 1-d )
distCnt = distCnt - 1;
% normalization
distCnt = distCnt / size(reQuantiBin, 1);
diversityFeature = [top100Freq; distCnt];
end