-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathevaluate_imagenet.py
238 lines (189 loc) · 10 KB
/
evaluate_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import argparse
import logging
import random
import numpy as np
import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
from torch.nn import functional as F
import datasets.datasetfactory as df
import model.learner as learner
import model.modelfactory as mf
import utils
from experiment.experiment import experiment
import replay as rep
import datasets.miniimagenet as imgnet
logger = logging.getLogger('experiment')
def main(args):
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
my_experiment = experiment(args.name, args, "../results/", args.commit)
writer = SummaryWriter(my_experiment.path + "tensorboard")
logger = logging.getLogger('experiment')
logger.setLevel(logging.INFO)
total_clases = 10
frozen_layers = []
for temp in range(args.rln * 2):
frozen_layers.append("vars." + str(temp))
logger.info("Frozen layers = %s", " ".join(frozen_layers))
final_results_all = []
total_clases = args.schedule
for tot_class in total_clases:
lr_list = [0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001, 0.000003]
for aoo in range(0, args.runs):
keep = np.random.choice(list(range(20)), tot_class, replace=False)
#
dataset = imgnet.MiniImagenet(args.dataset_path, mode='test', elem_per_class=30, classes=keep, seed=aoo)
dataset_test = imgnet.MiniImagenet(args.dataset_path, mode='test', elem_per_class=30, test=args.test, classes=keep, seed=aoo)
# Iterators used for evaluation
iterator = torch.utils.data.DataLoader(dataset_test, batch_size=128,
shuffle=True, num_workers=1)
iterator_sorted = torch.utils.data.DataLoader(dataset, batch_size=1,
shuffle=args.iid, num_workers=1)
#
print(args)
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
results_mem_size = {}
for mem_size in [args.memory]:
max_acc = -10
max_lr = -10
for lr in lr_list:
print(lr)
# for lr in [0.001, 0.0003, 0.0001, 0.00003, 0.00001]:
maml = torch.load(args.model, map_location='cpu')
if args.scratch:
config = mf.ModelFactory.get_model("na", args.dataset)
maml = learner.Learner(config)
# maml = MetaLearingClassification(args, config).to(device).net
maml = maml.to(device)
for name, param in maml.named_parameters():
param.learn = True
for name, param in maml.named_parameters():
# logger.info(name)
if name in frozen_layers:
# logger.info("Freeezing name %s", str(name))
param.learn = False
# logger.info(str(param.requires_grad))
else:
if args.reset:
w = nn.Parameter(torch.ones_like(param))
# logger.info("W shape = %s", str(len(w.shape)))
if len(w.shape) > 1:
torch.nn.init.kaiming_normal_(w)
else:
w = nn.Parameter(torch.zeros_like(param))
param.data = w
param.learn = True
frozen_layers = []
for temp in range(args.rln * 2):
frozen_layers.append("vars." + str(temp))
torch.nn.init.kaiming_normal_(maml.parameters()[-2])
w = nn.Parameter(torch.zeros_like(maml.parameters()[-1]))
maml.parameters()[-1].data = w
for n, a in maml.named_parameters():
n = n.replace(".", "_")
# logger.info("Name = %s", n)
if n == "vars_14":
w = nn.Parameter(torch.ones_like(a))
# logger.info("W shape = %s", str(w.shape))
torch.nn.init.kaiming_normal_(w)
a.data = w
if n == "vars_15":
w = nn.Parameter(torch.zeros_like(a))
a.data = w
correct = 0
for img, target in iterator:
with torch.no_grad():
img = img.to(device)
target = target.to(device)
logits_q = maml(img, vars=None, bn_training=False, feature=False)
pred_q = (logits_q).argmax(dim=1)
correct += torch.eq(pred_q, target).sum().item() / len(img)
logger.info("Pre-epoch accuracy %s", str(correct / len(iterator)))
filter_list = ["vars.0", "vars.1", "vars.2", "vars.3", "vars.4", "vars.5"]
logger.info("Filter list = %s", ",".join(filter_list))
list_of_names = list(
map(lambda x: x[1], list(filter(lambda x: x[0] not in filter_list, maml.named_parameters()))))
list_of_params = list(filter(lambda x: x.learn, maml.parameters()))
list_of_names = list(filter(lambda x: x[1].learn, maml.named_parameters()))
if args.scratch or args.no_freeze:
print("Empty filter list")
list_of_params = maml.parameters()
#
for x in list_of_names:
logger.info("Unfrozen layer = %s", str(x[0]))
opt = torch.optim.Adam(list_of_params, lr=lr)
res_sampler = rep.ReservoirSampler(mem_size)
for _ in range(0, args.epoch):
for img, y in iterator_sorted:
if mem_size > 0:
res_sampler.update_buffer(zip(img, y))
res_sampler.update_observations(len(img))
img = img.to(device)
y = y.to(device)
img2, y2 = res_sampler.sample_buffer(8)
img2 = img2.to(device)
y2 = y2.to(device)
img = torch.cat([img, img2], dim=0)
y = torch.cat([y, y2], dim=0)
else:
img = img.to(device)
y = y.to(device)
pred = maml(img)
opt.zero_grad()
loss = F.cross_entropy(pred, y)
loss.backward()
opt.step()
logger.info("Result after one epoch for LR = %f", lr)
correct = 0
for img, target in iterator:
img = img.to(device)
target = target.to(device)
logits_q = maml(img, vars=None, bn_training=False, feature=False)
pred_q = (logits_q).argmax(dim=1)
# print("Pred=", pred_q)
# print("Target=", target)
correct += torch.eq(pred_q, target).sum().item() / len(img)
logger.info(str(correct / len(iterator)))
if (correct / len(iterator) > max_acc):
max_acc = correct / len(iterator)
max_lr = lr
lr_list = [max_lr]
results_mem_size[mem_size] = (max_acc, max_lr)
logger.info("Final Max Result = %s", str(max_acc))
writer.add_scalar('/finetune/best_' + str(aoo), max_acc, tot_class)
final_results_all.append((tot_class, results_mem_size))
print("A= ", results_mem_size)
logger.info("Final results = %s", str(results_mem_size))
my_experiment.results["Final Results"] = final_results_all
my_experiment.store_json()
print("FINAL RESULTS = ", final_results_all)
writer.close()
if __name__ == '__main__':
argparser = argparse.ArgumentParser()
argparser.add_argument('--epoch', type=int, help='epoch number', default=1)
argparser.add_argument('--seed', type=int, help='epoch number', default=222)
argparser.add_argument('--schedule', type=int, nargs='+', default=[2, 4, 6, 8, 10],
help='Decrease learning rate at these epochs.')
argparser.add_argument('--memory', type=int, help='epoch number', default=0)
argparser.add_argument('--model', type=str, help='epoch number', default="none")
argparser.add_argument('--scratch', action='store_true', default=False)
argparser.add_argument('--dataset', help='Name of experiment', default="omniglot")
argparser.add_argument('--name', help='Name of experiment', default="evaluation")
argparser.add_argument("--commit", action="store_true")
argparser.add_argument("--no-freeze", action="store_true")
argparser.add_argument('--reset', action="store_true")
argparser.add_argument('--test', action="store_true")
argparser.add_argument("--iid", action="store_true")
argparser.add_argument('--dataset-path', help='Name of experiment', default="imagenet")
argparser.add_argument("--rln", type=int, default=6)
argparser.add_argument("--runs", type=int, default=5)
args = argparser.parse_args()
import os
args.name = "/".join([args.dataset, "eval", str(args.epoch).replace(".", "_"), args.name])
main(args)