-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_dcgan.py
285 lines (246 loc) · 10.7 KB
/
train_dcgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import argparse
import os
from functools import partial
import random
import numpy as np
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import matplotlib.pyplot as plt
import modules.dcgan as dcgan
from modules.functions import weights_init_dcgan
from utils.utils import num_params, format_number_km
net_type_names = ['A', 'B']
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', required=True,
help='celeba | cifar10 | lsun | mnist |imagenet | folder | lfw | fake')
parser.add_argument('--data_path', required=False, help='path to dataset')
parser.add_argument('--logs_path', default='./logs_dcgan',
help='folder to output images and model checkpoints')
parser.add_argument('--kG', type=int,
help='Widening factor for the Generator.', default=1)
parser.add_argument('--kD', type=int,
help='Widening factor for the Discriminator.', default=1)
parser.add_argument('--fixedG', action='store_true', help='Use Fixed G')
parser.add_argument('--fixedD', action='store_true', help='Use Fixed D')
parser.add_argument('--freezeG', action='store_true', help="Freeze G and don't train it")
parser.add_argument('--freezeD', action='store_true', help="Freeze D and don't train it")
parser.add_argument('--net_type', default='A',
choices=net_type_names,
help='Type of a fixed DCGAN to use'
'A - all convs are fixed. '
'B - last conv in G and first conv in D are trainable, '
'others are fixed.'
'Choices: ' + ' | '.join(net_type_names))
parser.add_argument('--workers', type=int,
help='number of data loading workers', default=4)
parser.add_argument('--batchSize', type=int, default=128,
help='input batch size')
parser.add_argument('--imageSize', type=int, default=64,
help='the height / width of the input image to network')
parser.add_argument('--nz', type=int, default=100,
help='size of the latent z vector')
parser.add_argument('--ngf', type=int, default=128)
parser.add_argument('--ndf', type=int, default=128)
parser.add_argument('--num_epochs', type=int, default=25,
help='number of epochs to train for')
parser.add_argument('--lr', type=float, default=0.0002,
help='learning rate, default=0.0002')
parser.add_argument('--beta1', type=float, default=0.5,
help='beta1 for adam. default=0.5')
parser.add_argument('--gpus', default='0',
help='Comma separated list of cuda GPUs to train on')
parser.add_argument('--netG_path', default='',
help="path to netG (to continue training)")
parser.add_argument('--netD_path', default='',
help="path to netD (to continue training)")
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument('--classes', default='bedroom',
help='comma separated list of classes for the lsun data set')
args = parser.parse_args()
print(args)
logs_path = args.logs_path
try:
os.makedirs(logs_path)
except OSError:
pass
if args.manualSeed is None:
seed = random.randint(1, 10000)
else:
seed = args.manualSeed
print("Random Seed: ", seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = True
if args.data_path is None and str(args.dataset).lower() != 'fake':
raise ValueError(
"`data_path` parameter is required for dataset \"%s\"" % args.dataset)
if args.dataset in ['celeba', 'imagenet', 'folder', 'lfw']:
# folder dataset
dataset = dset.ImageFolder(root=args.data_path,
transform=transforms.Compose([
transforms.Resize(args.imageSize),
transforms.CenterCrop(args.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)),
]))
nc = 3
elif args.dataset == 'lsun':
classes = [c + '_train' for c in args.classes.split(',')]
dataset = dset.LSUN(root=args.data_path, classes=classes,
transform=transforms.Compose([
transforms.Resize(args.imageSize),
transforms.CenterCrop(args.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)),
]))
nc = 3
elif args.dataset == 'cifar10':
dataset = dset.CIFAR10(root=args.data_path, download=True,
transform=transforms.Compose([
transforms.Resize(args.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)),
]))
nc = 3
elif args.dataset == 'mnist':
dataset = dset.MNIST(root=args.data_path, download=True,
transform=transforms.Compose([
transforms.Resize(args.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
]))
nc = 1
elif args.dataset == 'fake':
dataset = dset.FakeData(image_size=(3, args.imageSize, args.imageSize),
transform=transforms.ToTensor())
nc = 3
else:
raise RuntimeError('Wrong dataset')
dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batchSize,
shuffle=True,
num_workers=args.workers)
gpus = [('cuda:' + x) for x in args.gpus.split(',')]
device = torch.device(gpus[0] if torch.cuda.is_available() else "cpu")
nz = args.nz
nz *= args.kG if args.fixedG else 1
ngf = args.ngf
ndf = args.ndf
# Creating G and D
netG = dcgan.Generator(nz, ngf, nc, args.kG, args.fixedG,
args.net_type).to(device)
netD = dcgan.Discriminator(nc, ndf, args.kD, args.fixedD,
args.net_type).to(device)
# Don't initialize fixed weights
init_fixed = False
netG.apply(partial(weights_init_dcgan, init_fixed=init_fixed))
netD.apply(partial(weights_init_dcgan, init_fixed=init_fixed))
if args.netG_path != '':
netG.load_state_dict(torch.load(args.netG_path))
if args.netD_path != '':
netD.load_state_dict(torch.load(args.netD_path))
criterion = nn.BCELoss()
fixed_noise = torch.randn(64, nz, 1, 1, device=device)
real_label = 1
fake_label = 0
# setup optimizer
optimizerD = optim.Adam(netD.parameters(), lr=args.lr, betas=(args.beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=args.lr, betas=(args.beta1, 0.999))
# Lists to keep track of progress
G_losses = []
D_losses = []
iters = 0
# Change if you want to checkpoint more often
checkpoint_every = args.num_epochs // 4
n_params_G, n_layers_G = num_params(netG)
n_params_D, n_layers_D = num_params(netD)
n_total_params_G, _ = num_params(netG, count_fixed=True)
n_total_params_D, _ = num_params(netD, count_fixed=True)
n_fixed_G = n_total_params_G - n_params_G
n_fixed_D = n_total_params_D - n_params_D
print("G: trainable, fixed, layers",
format_number_km(n_params_G),
format_number_km(n_fixed_G),
n_layers_G)
print("D: trainable, fixed, layers",
format_number_km(n_params_D),
format_number_km(n_fixed_D),
n_layers_D)
for epoch in range(args.num_epochs):
for i, data in enumerate(dataloader, 0):
############################
# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
###########################
# train with real
netD.zero_grad()
real_cpu = data[0].to(device)
batch_size = real_cpu.size(0)
label = torch.full((batch_size,), real_label, device=device)
output = netD(real_cpu).view(-1)
errD_real = criterion(output, label)
errD_real.backward()
D_x = output.mean().item()
# train with fake
noise = torch.randn(batch_size, nz, 1, 1, device=device)
fake = netG(noise)
label.fill_(fake_label)
output = netD(fake.detach()).view(-1)
errD_fake = criterion(output, label)
errD_fake.backward()
D_G_z1 = output.mean().item()
errD = errD_real + errD_fake
optimizerD.step()
############################
# (2) Update G network: maximize log(D(G(z)))
###########################
netG.zero_grad()
label.fill_(real_label) # fake labels are real for generator cost
output = netD(fake).view(-1)
errG = criterion(output, label)
errG.backward()
D_G_z2 = output.mean().item()
optimizerG.step()
D_loss = errD.item() if not args.freezeD else 0
G_loss = errG.item() if not args.freezeG else 0
D_losses.append(D_loss)
G_losses.append(G_loss)
# Output training stats
if i % 100 == 0:
print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
% (epoch, args.num_epochs, i, len(dataloader),
D_loss, G_loss, D_x, D_G_z1, D_G_z2))
iters += 1
# Check how the generator is doing by saving G's output on fixed_noise
with torch.no_grad():
fake = netG(fixed_noise).detach().cpu()
vutils.save_image(fake[:64],
'%s/fake_samples_epoch_%03d.png' % (
logs_path, epoch),
padding=2,
normalize=True,)
# do checkpointing (every n epochs and on the last epoch)
if ((epoch + 1) % checkpoint_every == 0) or (epoch == args.num_epochs-1):
torch.save(netG.state_dict(), '%s/netG_epoch_%d.pth' % (logs_path, epoch))
torch.save(netD.state_dict(), '%s/netD_epoch_%d.pth' % (logs_path, epoch))
# Grab a batch of real images from the dataloader and save it
real = next(iter(dataloader))[0]
vutils.save_image(real[:64],
'%s/real_samples.png' % logs_path,
normalize=True)
# Losses
plt.figure(figsize=(10,5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses, label="G")
plt.plot(D_losses, label="D")
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.savefig('%s/Losses.png' % logs_path)