-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMS5607.cpp
272 lines (225 loc) · 5.76 KB
/
MS5607.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#include "MS5607.h"
#include <Wire.h>
I2C::I2C() {
rxTimeout = 200;
Wire.begin();
}
byte I2C::write(byte address, const char *buffer, byte bufSize) {
Wire.beginTransmission(address);
Wire.write(buffer, bufSize);
return Wire.endTransmission();
}
byte I2C::read(byte address, char *buffer, byte bufSize) {
Wire.requestFrom(address, bufSize);
long start = millis();
while (bufSize > 0) {
while (Wire.available() > 0) {
*buffer++ = Wire.read();
bufSize--;
if (bufSize == 0) return 0;
}
word elapsed = millis() - start;
if (elapsed > rxTimeout) return 1;
}
return 0;
}
void I2C::setSlow() {
// F_CPU / (16 + 2*TWBR*prescaler)
// Prescaler: 1/4/16/64
//TWBR = 92;
TWBR = 64;
TWSR = 0; // Prescaler: /1
}
void I2C::setNormal() {
// F_CPU / (16 + 2*TWBR*prescaler)
// Prescaler: 1/4/16/64
TWBR = 32;
TWSR = 0; // Prescaler: /1
}
MS5607::MS5607(I2C &bus, byte subAddress) : _bus(bus) {
_address = (0x76 | (subAddress & 1));
}
bool MS5607::reset() {
char cmd = kCmdReset;
return 0 == _bus.write(_address, &cmd, 1);
}
bool MS5607::readPROM(byte address, word &result) {
byte cmd[1];
cmd[0] = kCmdReadPROM | ((address & 0x07) << 1);
if (0 != _bus.write(_address, (char *)cmd, 1)) {
return false;
}
byte reply[2];
if (0 != _bus.read(_address, (char *)reply, 2)) {
return false;
}
result = ((word)reply[0] << 8) | reply[1];
return true;
}
bool MS5607::startConversion(ConversionType type, OversamplingRate osr) {
byte cmd[1];
cmd[0] = kCmdConvert | ((byte)type << 4) | ((byte)osr << 1);
return 0 == _bus.write(_address, (char *)cmd, 1);
}
bool MS5607::readResult24(long &result) {
byte cmd[1];
cmd[0] = kCmdReadADC;
if (0 != _bus.write(_address, (char *)cmd, 1)) {
return false;
}
byte reply[3];
if (0 != _bus.read(_address, (char *)reply, 3)) {
return false;
}
result = ((long)reply[0] << 16) | ((word)reply[1] << 8) | reply[2];
return true;
}
bool MS5607::readResult16(word &result) {
byte cmd[1];
cmd[0] = kCmdReadADC;
if (0 != _bus.write(_address, (char *)cmd, 1)) {
return false;
}
byte reply[2];
if (0 != _bus.read(_address, (char *)reply, 2)) {
return false;
}
result = ((word)reply[0] << 8) | reply[1];
return true;
}
Barometer::Barometer(I2C &bus, byte subaddress)
: MS5607(bus, subaddress)
{
}
bool Barometer::initialize()
{
uint8_t nTry = 3;
while (nTry > 0) {
bool success = true;
for (byte idx = 0; idx < 7; idx++) {
if (!readPROM(idx, PROM[idx])) {
success = false;
break;
}
}
if (success) return true;
nTry--;
delay(30);
}
return false;
}
/**
* Measures and updates both temperature and pressure
*/
bool Barometer::update() {
p = t = 0;
if (!startConversion(kTemperature, kOSR1024)) {
return false;
}
delay(2);
long d2;
if (!readResult24(d2)) {
return false;
}
int32_t dt = d2 - ((int32_t)PROM[5] << 8);
t = 2000 + ((dt * PROM[6]) >> 23);
if (!startConversion(kPressure, kOSR4096)) {
return false;
}
delay(10);
long d1;
if (!readResult24(d1)) {
return false;
}
uint64_t off = ((uint64_t)PROM[2] << 17) + ((PROM[4] * (int64_t)dt) >> 6);
uint64_t sens = ((uint64_t)PROM[1] << 16) + ((PROM[3] * (int64_t)dt) >> 7);
p = (((d1 * sens) >> 21) - off) >> 15;
//uint16_t off = PROM[2] + ((PROM[4] * (int32_t)dt) >> 15);
//uint16_t sens = PROM[1] + ((PROM[3] * (int32_t)dt) >> 15);
//p = (((uint32_t)d1 * sens) >> 14) - off;
return true;
}
/// Returns temperature in Celsium x100 (2000 = 20.00 C)
int16_t Barometer::getTemperature() {
return t;
}
/// Returns pressure in Pascals (100000 = 100000 Pa = 1000 mbar)
uint32_t Barometer::getPressure() {
return p;
}
BarometerSimple::BarometerSimple(I2C &bus, byte subaddress)
: MS5607(bus, subaddress)
{
}
bool BarometerSimple::initialize()
{
for (byte idx = 0; idx < 7; idx++) {
if (!readPROM(idx, PROM[idx]))
return false;
}
return true;
}
/**
* Measures and updates both temperature and pressure
*/
bool BarometerSimple::update() {
p = t = 0;
if (!startConversion(kTemperature, kOSR1024)) {
return false;
}
_delay_ms(30);
word d2;
if (!readResult16(d2)) {
return false;
}
int16_t dt = d2 - PROM[5];
t = 2000 + (((int32_t)dt * PROM[6]) >> 15);
if (!startConversion(kPressure, kOSR1024)) {
return false;
}
_delay_ms(30);
word d1;
if (!readResult16(d1)) {
return false;
}
uint16_t off = PROM[2] + ((PROM[4] * (int32_t)dt) >> 15);
uint16_t sens = PROM[1] + ((PROM[3] * (int32_t)dt) >> 15);
p = (((uint32_t)d1 * sens) >> 14) - off;
return true;
}
/// Returns temperature in Celsium x100 (2000 = 20.00 C)
int16_t BarometerSimple::getTemperature() {
return t;
}
/// Returns pressure in Pascals (100000 = 100000 Pa = 1000 mbar)
uint16_t BarometerSimple::getPressure() {
return p;
}
uint16_t BarometerSimple::getAltitude() {
return getAltitude(p);
}
uint16_t BarometerSimple::getAltitude(uint16_t pressure) {
// Atmospheric pressure in Pa/4 for altitudes 0..32 km in steps of 2 km
// Source: http://www.pdas.com/atmos.html
const uint16_t lookup[] = {
25325, 19875, 15415, 11805,
8913, 6625, 4850, 3543, 2588, 1891,
1382, 1012, 743, 547, 404, 299, 222
};
const uint16_t stepSize = 2000; // 5C
// Find the pair of closest lookup table entries
uint8_t idx = 0;
uint16_t alt = 0;
while (lookup[idx] > pressure) {
idx++;
alt += stepSize;
if (alt > 32000) {
return 32000;
}
}
if (idx == 0) return 0;
// Linear interpolation between adjacent table entries
uint16_t diff = lookup[idx - 1] - lookup[idx];
alt -= ((uint32_t)stepSize * (pressure - lookup[idx]) + diff/2) / diff;
return alt;
}