-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_utils.py
133 lines (116 loc) · 4.41 KB
/
plot_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import colorConverter
from brian2.units import msecond
import scipy.stats as stats
import seaborn as sns
import string
import styling
colors = {
'exc': 'b',
'inh': 'r'
}
def label_panel(ax, ord, lower=False, left=1):
lb = ax.set_title(styling.panel_labels[ord], loc='left', y=1, va='top' if lower else 'baseline', **styling.label_kwargs, ha='left')
bb_plotonly = ax.get_window_extent()
bb_withdeco = ax.get_tightbbox()
x = left*(bb_withdeco.xmin - bb_plotonly.xmin) / bb_plotonly.bounds[2]
lb.set_position((x, 1))
return lb
def fullwidth(height):
return styling.fig_width, height * styling.fig_width / 6.29
def halfwidth(height):
return styling.fig_halfwidth, height * styling.fig_halfwidth / 3
def grouped_bars(series, xlabels, slabels, ax, w0=0.7):
x = np.arange(len(xlabels)) # the label locations
n = len(series)
width = w0/n # the width of the bars
for i, (s, label) in enumerate(zip(series, slabels)):
ax.bar(x - w0/2 + i*width, s, width, label=label)
ax.set_xticks(x, xlabels)
ax.legend()
def plot_pulse_hist(histograms, index_N, index_t, dt, figsize=(10,15), grid=False, cmap='PiYG', vmin=None, vmax=None, symmetric=True, cscale=False):
if type(index_t) == int:
assert len(index_N.shape) == 1
index_N = np.repeat(index_N.reshape(-1,1), index_t, 1)
index_t = np.repeat(np.arange(index_t).reshape(1,-1), len(index_N), 0)
histograms = np.asarray(histograms)
x = np.arange(index_t.shape[-1] + 1)*dt/msecond
y = np.arange(len(index_N)+1)
if symmetric:
if vmax is None:
vmax = np.nanmax(np.abs(histograms))
if vmin is None:
vmin = -vmax
else:
if vmax is None:
vmax = np.nanmax(histograms)
if vmin is None:
vmin = np.nanmin(histograms)
fig, axs = plt.subplots(1, len(histograms), figsize=figsize, sharex=True, sharey=True, constrained_layout=True, squeeze=False)
axs = axs[0]
orders = []
for ax, hist in zip(axs, histograms):
h = hist[index_N, index_t]
order = 0
if cscale:
hmax, hmin = np.nanmax(h), np.nanmin(h)
max_order = int(np.log10(vmax/hmax)) if hmax>0 else np.nan
min_order = int(np.log10(vmin/hmin)) if hmin<0 else np.nan
order = np.nanmin([max_order, min_order])
if np.isnan(order):
order = 1
orders.append(order)
m = ax.pcolormesh(x, y, h*10**order, vmin=vmin, vmax=vmax, cmap=cmap, shading='flat')
ax.set_xlabel('Time after stimulus (ms)')
if grid:
ax.grid()
axs[0].set_ylabel('Neuron #')
cb = plt.colorbar(m, location='bottom', ax=axs, aspect=40, fraction=1/figsize[1], pad=.5/figsize[1])
if cscale:
return fig, axs, cb, orders
else:
return fig, axs, cb
def alpha_to_color(c, alpha, bg='white'):
c = np.asarray(colorConverter.to_rgb(c))
bg = np.asarray(colorConverter.to_rgb(bg))
rgb = (1-alpha)*bg + alpha*c
return rgb
def fill_ratios(*ratios, to=100):
ratios = np.asarray(ratios)
total = ratios[ratios>0].sum()
remainder = to-total
ratios[ratios<0] = remainder / (ratios<0).sum()
return ratios
def inset_hist(ax, data, x=True, median_color='C1', rescale=True, **kwargs):
if x:
y = ax.get_ylim()
if rescale:
ax.set_ylim(top=y[1] + .1*(y[1]-y[0]))
tx = ax.twinx()
else:
y = ax.get_xlim()
if rescale:
ax.set_xlim(right=y[1] + .1*(y[1]-y[0]))
tx = ax.twiny()
hargs = dict(color='grey', histtype='stepfilled', edgecolor='dimgrey', orientation='vertical' if x else 'horizontal')
hargs.update(**kwargs)
binned, bins, *_ = tx.hist(data, 20, **hargs)
ci = stats.bootstrap([data], np.median, n_resamples=10000)
lo, hi = ci.confidence_interval
bsize = np.diff(bins)[0]
mask = (bins > lo - bsize) & (bins < hi + bsize)
y = bins[mask]
y[0], y[-1] = lo, hi
x_in_ci = binned[mask[1:]].copy()
x_in_ci[0] = x_in_ci[1]
if x:
tx.fill_between(y, x_in_ci, step='pre', ec='dimgrey', fc=median_color)
tx.set_ylim(bottom=-10*binned.max())
tx.set_yticks([])
else:
tx.fill_betweenx(y, x_in_ci, step='pre', ec='dimgrey', fc=median_color)
tx.set_xlim(left=-10*binned.max())
tx.set_xticks([])
sns.despine(ax=tx)
return tx