-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathBiFPN.py
56 lines (50 loc) · 3.57 KB
/
BiFPN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# by kentaroy47
import torch
from torch import nn
from torch.nn import functional as F
class BiFPN(nn.Module):
def __init__(self, num_channels):
super(BiFPN, self).__init__()
self.num_channels = num_channels
out_channels = num_channels
self.conv7up = nn.Sequential(nn.Conv2d(num_channels, num_channels, kernel_size=1, stride=1, padding=0, groups=num_channels),nn.BatchNorm2d(num_features=out_channels),nn.ReLU())
self.conv6up = nn.Sequential(nn.Conv2d(num_channels, num_channels, kernel_size=1, stride=1, padding=0, groups=num_channels), nn.BatchNorm2d(num_features=out_channels),nn.ReLU())
self.conv5up = nn.Sequential(nn.Conv2d(num_channels, num_channels, kernel_size=1, stride=1, padding=0, groups=num_channels), nn.BatchNorm2d(num_features=out_channels),nn.ReLU())
self.conv4up = nn.Sequential(nn.Conv2d(num_channels, num_channels, kernel_size=1, stride=1, padding=0, groups=num_channels), nn.BatchNorm2d(num_features=out_channels),nn.ReLU())
self.conv3up = nn.Sequential(nn.Conv2d(num_channels, num_channels, kernel_size=1, stride=1, padding=0, groups=num_channels), nn.BatchNorm2d(num_features=out_channels),nn.ReLU())
self.conv4dw = nn.Sequential(nn.Conv2d(num_channels, num_channels, kernel_size=1, stride=1, padding=0, groups=num_channels), nn.BatchNorm2d(num_features=out_channels),nn.ReLU())
self.conv5dw = nn.Sequential(nn.Conv2d(num_channels, num_channels, kernel_size=1, stride=1, padding=0, groups=num_channels), nn.BatchNorm2d(num_features=out_channels),nn.ReLU())
self.conv6dw = nn.Sequential(nn.Conv2d(num_channels, num_channels, kernel_size=1, stride=1, padding=0, groups=num_channels), nn.BatchNorm2d(num_features=out_channels),nn.ReLU())
self.conv7dw = nn.Sequential(nn.Conv2d(num_channels, num_channels, kernel_size=1, stride=1, padding=0, groups=num_channels), nn.BatchNorm2d(num_features=out_channels),nn.ReLU())
def forward(self, inputs):
num_channels = self.num_channels
P3_in, P4_in, P5_in, P6_in, P7_in = inputs
# upsample network
P7_up = self.conv7up(P7_in)
scale = (P6_in.size(3)/P7_up.size(3))
P6_up = self.conv6up(P6_in+self.Resize(scale_factor=scale)(P7_up))
scale = (P5_in.size(3)/P6_up.size(3))
P5_up = self.conv5up(P5_in+self.Resize(scale_factor=scale)(P6_up))
scale = (P4_in.size(3)/P5_up.size(3))
P4_up = self.conv4up(P4_in+self.Resize(scale_factor=scale)(P5_up))
scale = (P3_in.size(3)/P4_up.size(3))
P3_out = self.conv3up(P3_in+self.Resize(scale_factor=scale)(P4_up))
# fix to downsample by interpolation
# downsample networks
P4_out = self.conv4dw(P4_in + P4_up+F.interpolate(P3_out, P4_up.size()[2:]))
P5_out = self.conv5dw(P5_in + P5_up+F.interpolate(P4_out, P5_up.size()[2:]))
P6_out = self.conv6dw(P6_in + P6_up+F.interpolate(P5_out, P6_up.size()[2:]))
P7_out = self.conv7dw(P7_in + P7_up+F.interpolate(P6_out, P7_up.size()[2:]))
return P3_out, P4_out, P5_out, P6_out, P7_out
@staticmethod
def Conv(in_channels, out_channels, kernel_size, stride, padding, groups=1):
features = nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups),
nn.BatchNorm2d(num_features=out_channels),
nn.ReLU()
)
return features
@staticmethod
def Resize(scale_factor=2, mode='bilinear'):
upsample = nn.Upsample(scale_factor=scale_factor, mode=mode)
return upsample