-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnltk_ibm.py
190 lines (162 loc) · 7.79 KB
/
nltk_ibm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# NLTK IBM models
# Written by Kelly Marchiiso, Jan 2021.
import argparse
import copy
from collections import defaultdict
from functools import reduce
import logging
from nltk.translate import AlignedSent, ibm1, ibm2
import pdb
import process_phrasetable
from utils import utils
def read(f_sents, sep='||_||'):
# Processes paired sentences separated by sep from a file.
# Returns sentences and vocabulary for both languages.
sents = []
word_counts = {'src': defaultdict(int), 'trg': defaultdict(int)}
with open(f_sents, 'r', encoding='utf-8', errors='surrogateescape') as f:
for line in f:
l1_sent, l2_sent = line.split(sep)
l1_words = l1_sent.strip().split()
l2_words = l2_sent.strip().split()
for word in l1_words:
word_counts['src'][word] += 1
for word in l2_words:
word_counts['trg'][word] += 1
sents.append(AlignedSent(l1_words, l2_words))
return sents, word_counts
def read_probs_from_phrasetable(min_input_prob, phrase_table, sep='||_||'):
# Read lexical probabilities from Vecmap / Monoses phrase table extraction:
# Format output from:
# https://github.com/artetxem/monoses/blob/master/training/induce-phrase-table.py
probs = defaultdict(dict)
for line in phrase_table:
src_wd, trg_wd, phrase_probs, *others = [
item.strip() for item in line.split(sep)]
invprob, invlexprob, fwdprob, fwdlexprob = phrase_probs.split()
if float(fwdprob) > min_input_prob:
probs[src_wd][trg_wd] = float(fwdprob)
return probs
def read_align_probs(filename, sep="||_||"):
align_prob = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda:defaultdict(lambda: 0.0))))
with open(filename, 'r', encoding='utf-8', errors='surrogateescape') as f:
for line in f:
e1, e2, e3, e4, e5 = line.split(sep)
e1, e2, e3, e4, e5 = int(e1), int(e2), int(e3), int(e4), float(e5)
align_prob[e1][e2][e3][e4] = e5
return align_prob
def merge_probdicts(d1, d2):
d1 = copy.deepcopy(d1)
# Updates probabilities in d1 if the pair appears in d2.
for src_wd in d2:
for trg_wd in d2[src_wd]:
if d1.get(src_wd) and trg_wd in d1[src_wd]:
d1[src_wd][trg_wd] = d2[src_wd][trg_wd]
return d1
def write_align_probs(align_probs, filename):
f = open(filename, 'w', encoding='utf-8', errors='surrogateescape')
for e1 in align_probs:
for e2 in align_probs[e1]:
for e3 in align_probs[e1][e2]:
for e4 in align_probs[e1][e2][e3]:
f.write('%d ||_|| %d ||_|| %d ||_|| %d ||_|| %0.7f\n' % (
e1, e2, e3, e4, align_probs[e1][e2][e3][e4]))
f.close()
def run(args):
logging.info('Running IBM1 with parameters:', args)
if args.ibm_model == 1:
ibm = ibm1.IBMModel1
elif args.ibm_model == 2:
ibm = ibm2.IBMModel2
sents, word_counts = read(args.sents)
###################
# Initialize translation and alignment tables.
# Note - may need to use init_prob_dict and update_probs_from_probdict I
# wrote previously if input_trns_probs is too big or gets mad because some pairs
# aren't initialized to a minimum probability. input_trns_probs sets prob dict
# to only contain pairs that cooccur in parallel sentences.
# For round 0, this translation table will be uniform, but it's not
# actually a prob dist b/c nltk assigns just a minimum probability, and
# doesn't normalize.
init_ibm = ibm(sents, 0)
starting_translation_table = init_ibm.translation_table
starting_alignment_table = copy.deepcopy(init_ibm.alignment_table)
if args.input_trns_probs:
logging.info('Reading translation probabilities from %s' %
args.input_trns_probs)
input_trns_probs = utils.dict_from_probsfile(
open(args.input_trns_probs, 'r', encoding='utf-8',
errors='surrogateescape'))
for srcwd in starting_translation_table:
if input_trns_probs.get(srcwd):
starting_translation_table[srcwd].update(input_trns_probs[srcwd])
# TODO: Original implementation doesn't normlize. I may want to switch
# this to only normalizing the srcwd if I update it from input_trns_probs
logging.info('Normalizing Translation Table')
normed_starting_translation_table = normalize_prob_dict(
starting_translation_table)
if args.input_align_probs:
logging.info('Reading alignment probabilities from %s' %
args.input_align_probs)
input_align_probs = read_align_probs(args.input_align_probs)
starting_alignment_table.update(input_align_probs)
input_prob_tables = {'translation_table': normed_starting_translation_table,
'alignment_table': starting_alignment_table}
#################
# Run IBM.
ibm_out = ibm(sents, args.iters, input_prob_tables)
final_probs = ibm_out.translation_table
align_probs = ibm_out.alignment_table
# Trim probs that are less than args.min_input_prob.
for src in final_probs:
# Source: https://stackoverflow.com/questions/23862406/filter-items-in-a-python-dictionary-where-keys-contain-a-specific-string
final_probs[src] = {src:trg for (src, trg) in final_probs[src].items()
if trg > args.min_output_prob}
#################
# Write Output Files.
logging.info('Writing output probabilities to file...')
utils.write_probs_outfile(final_probs, args.outfile, word_counts, args.min_count, args.topk)
write_align_probs(align_probs, args.outfile + '.align')
logging.info('Done')
def normalize_prob_dict(prob_dict):
prob_dict_copy = copy.deepcopy(prob_dict)
# Inspiration:
# https://stackoverflow.com/questions/12229064/mapping-over-values-in-a-python-dictionary
# https://stackoverflow.com/questions/16417916/normalizing-dictionary-values
for srcwd in prob_dict:
total_prob = float(reduce(lambda x, y: x + y,
prob_dict[srcwd].values()))
prob_dict_copy[srcwd] = {k: v / total_prob for k,v in
prob_dict[srcwd].items()}
return prob_dict_copy
def main():
parser = argparse.ArgumentParser(description='IBM Model 1')
parser.add_argument('--sents', metavar='PATH', help='Training sentences')
parser.add_argument('--ibm_model', type=int, default=2, help='IBM Model.')
parser.add_argument('--input-trns-probs', default=None, metavar='PATH',
help='input word translation probs.'
'If omitted, use training sents.')
parser.add_argument('--input-align-probs', metavar='PATH', default=None,
help='Input alignment probability table')
parser.add_argument('--outfile', metavar='PATH', required=True,
help='Output file.')
parser.add_argument('--min-input-prob', default=0.001, type=float,
help='minimum input probability to read in.')
parser.add_argument('--min-output-prob', default=0.1, type=float,
help='minimum output probability to write to file.')
parser.add_argument('--min-count', type=int, default=2,
help="minimum number of corpus occurrences for a word to be output")
parser.add_argument('--topk', default=1, type=int,
help='output top k hypotheses per source word to write to file.' +
'Note: -1 gives you all but the least probable per source word,' +
'above the threshold.')
parser.add_argument('--iters', type=int, default=5,
help='number of iterations to run IBM Model')
args = parser.parse_args()
# If arg received 'None' from shell script, assign it to None.
for arg in vars(args):
if getattr(args, arg) == 'None':
setattr(args, arg, None)
run(args)
if __name__ == '__main__':
main()