-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_classifier.py
215 lines (178 loc) · 7 KB
/
train_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#!/usr/bin/python
"""
Main file
"""
import os, sys
import argparse
import numpy as np
import pandas as pd
import math
import random
import itertools
import time
from dl_func import *
from sits_func import *
from res_func import *
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.externals import joblib
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
#--------------------- MAIN ------------------------
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
def main(classifier_type, train_file, test_file):
classif_type = ["RF", "TempCNN", "GRU-RNNbi", "GRU-RNN"]
if classifier_type not in classif_type:
print("ERR: select an available classifier (RF, TempCNN, GRU-RNNbi or GRU-RNN)")
sys.exit(1)
dl_flag = True
if classifier_type == "RF":
dl_flag = False
# Parameters
#-- general
nchannels = 10
#-- deep learning
n_epochs = 5
batch_size = 64
val_rate = 0.1
# Reading SITS
X_train, pid_train, y_train = readSITSData(train_file)
X_test, pid_test, y_test = readSITSData(test_file)
nclasses = len(np.unique(y_train))
# Evaluated metrics
if classifier_type=="RF":
eval_label = ['OA', 'OOB_error', 'train_time', 'test_time', 'RMSE']
else:
eval_label = ['OA', 'train_loss', 'train_time', 'test_time']
# Output filenames
res_file = './resultOA-' + classifier_type + '.csv'
res_mat = np.zeros((len(eval_label),1))
model_file = './model-' + classifier_type + '.h5'
conf_file = './confMatrix-' + classifier_type + '.csv'
acc_loss_file = './trainingHistory-'+ classifier_type + '.csv' #-- only for deep learning models
if os.path.isfile(res_file):
print("ERR: result file already exists")
sys.exit(1)
# Training
if dl_flag: #-- deep learning approaches
#---- Pre-processing train data
X_train = reshape_data(X_train, nchannels)
min_per, max_per = computingMinMax(X_train)
X_train = normalizingData(X_train, min_per, max_per)
y_train_one_hot = to_categorical(y_train, nclasses)
X_test = reshape_data(X_test, nchannels)
X_test = normalizingData(X_test, min_per, max_per)
y_test_one_hot = to_categorical(y_test, nclasses)
#---- Create a validation set if validation set required
if val_rate>0:
print("Creating a validation set")
unique_pid_train, indices = np.unique(pid_train, return_inverse=True)
nb_pols = len(unique_pid_train)
ind_shuffle = list(range(nb_pols))
random.shuffle(ind_shuffle)
list_indices = [[] for i in range(nb_pols)]
shuffle_indices = [[] for i in range(nb_pols)]
[ list_indices[ind_shuffle[val]].append(idx) for idx, val in enumerate(indices)]
final_ind = list(itertools.chain.from_iterable(list_indices))
m = len(final_ind)
final_train = int(math.ceil(m*(1.0-val_rate)))
shuffle_pid_train = pid_train[final_ind]
id_final_train = shuffle_pid_train[final_train]
while shuffle_pid_train[final_train-1]==id_final_train:
final_train = final_train-1
final_train = int(final_train)
X_val = X_train[final_ind[final_train:],:,:]
y_val = y_train[final_ind[final_train:]]
X_train = X_train[final_ind[:final_train],:,:]
y_train = y_train[final_ind[:final_train]]
y_train_one_hot = to_categorical(y_train, nclasses)
y_val_one_hot = to_categorical(y_val, nclasses)
if classifier_type == "TempCNN":
model = Archi_TempCNN(X_train, nclasses)
elif classifier_type == "GRU-RNNbi":
model = Archi_GRURNNbi(X_train, nclasses)
elif classifier_type == "GRU-RNN":
model = Archi_GRURNN(X_train, nclasses)
if val_rate==0:
res_mat[0], res_mat[1], model, model_hist, res_mat[2], res_mat[3] = \
trainTestModel(model, X_train, y_train_one_hot, X_test, y_test_one_hot, model_file, n_epochs=5, batch_size=batch_size)
else:
res_mat[0], res_mat[1], model, model_hist, res_mat[2], res_mat[3] = \
trainTestValModel(model, X_train, y_train_one_hot, X_val, y_val_one_hot, X_test, y_test_one_hot, model_file, n_epochs=5, batch_size=batch_size)
saveLossAcc(model_hist, acc_loss_file)
p_test = model.predict(x=X_test)
#---- computing confusion matrices
C = computingConfMatrix(y_test, p_test, nclasses)
print('Overall accuracy (OA): ', res_mat[0])
print('Train loss: ', res_mat[1])
print('Training time (s): ', res_mat[2])
print('Test time (s): ', res_mat[3])
else:
rf = RandomForestClassifier(n_estimators=100, max_features='sqrt',
max_depth=25, min_samples_split=2, oob_score=True, n_jobs=-1, verbose=1)
#-- train a rf classifier
start_train_time = time.time()
rf.fit(X_train, y_train)
res_mat[2] = round(time.time()-start_train_time, 2)
print('Training time (s): ', res_mat[2,0])
#-- save the model
joblib.dump(rf, model_file)
print("Writing the model over")
#-- prediction
start_test_time = time.time()
predicted = rf.predict(X_test)
res_mat[3] = round(time.time()-start_test_time, 2)
print('Test time (s): ', res_mat[3,0])
#-- OA and OA_OOB
res_mat[0] = accuracy_score(y_test, predicted)
res_mat[1] = rf.oob_score_
#-- RMSE
nbTestInstances = y_test.shape[0]
p_test = rf.predict_proba(X_test)
y_test_one_hot = np.eye(nclasses)[y_test]
diff_proba = y_test_one_hot - p_test
rmse = math.sqrt(np.sum(diff_proba*diff_proba)/nbTestInstances)
res_mat[4] = rmse
#-- compute confusion matrix
C = confusion_matrix(y_test, predicted)
print('Overall accuracy (OA): ', res_mat[0])
print('Out-of-bag score estimate (OA_OOB): ', res_mat[1])
print('Training time (s): ', res_mat[2])
print('Test time (s): ', res_mat[3])
print('RMSE: ', res_mat[4])
# Saving CM and summary res file
#---- saving the confusion matrix
class_label = ["cl0"]
for add in range(nclasses-1):
class_label.append("cl"+str(add))
save_confusion_matrix(C, class_label, conf_file)
#---- saving res_file
saveMatrix(np.transpose(res_mat), res_file, eval_label)
#-----------------------------------------------------------------------
if __name__ == "__main__":
try:
if len(sys.argv) == 1:
prog = os.path.basename(sys.argv[0])
print(' '+sys.argv[0]+' [options]')
print(" Help: ", prog, " --help")
print(" or: ", prog, " -h")
print("example 1 : python %s --classifier TempCNN " %sys.argv[0])
sys.exit(-1)
else:
parser = argparse.ArgumentParser(description='Training RF, TempCNN or GRU-RNN models on SITS datasets')
parser.add_argument('--classifier', dest='classifier',
help='classifier to train (RF/TempCNN/GRU-RNNbi/GRU-RNN)')
parser.add_argument('--train', dest='train_file',
help='training file')
parser.add_argument('--test', dest='test_file',
help='test_file')
args = parser.parse_args()
main(args.classifier, args.train_file, args.test_file)
print("0")
except(RuntimeError):
print >> sys.stderr
sys.exit(1)
#EOF