-
Notifications
You must be signed in to change notification settings - Fork 1
/
iou.py
150 lines (113 loc) · 5.02 KB
/
iou.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import numpy as np
import pandas as pd
import collections
import os
import scipy.ndimage as ndimage
from scipy.ndimage import binary_dilation, filters
BBOX_LIST_FNAME = 'BBox_List_2017.csv'
VALID_FNAME = 'valid.txt'
CROP_DEL, RESCALE_FACTOR = 16., 4.
# class-id mapping
class_list = ['Atelectasis', 'Cardiomegaly', 'Effusion', 'Infiltration', 'Mass', 'Nodule', 'Pneumonia', 'Pneumothorax']
def IOU(xywh1, xywh2):
x1, y1, w1, h1 = xywh1
x2, y2, w2, h2 = xywh2
dx = min(x1+w1, x2+w2) - max(x1, x2)
dy = min(y1+h1, y2+h2) - max(y1, y2)
intersection = dx * dy if (dx >=0 and dy >= 0) else 0.
union = w1 * h1 + w2 * h2 - intersection
return (intersection / union)
def preprocess_bbox_df(mismatch_id=-1):
# filename-id mapping
with open('valid.txt', 'r') as f:
valid_list = f.readlines()
valid_list = [s.strip('\n') for s in valid_list]
df = pd.read_csv(BBOX_LIST_FNAME)
# map file/class name to id
df['Image Index'] = df['Image Index'].apply(lambda x: valid_list.index(x) if x in valid_list else mismatch_id)
#df['Finding Label'] = df['Finding Label'].apply(lambda x: class_list.index(x))
return df
def validate_score(predicted_xywh, bbox_df, img_id, class_name):
match_row = bbox_df[(bbox_df['Image Index'] == img_id) & (bbox_df['Finding Label'] == class_name)]
try:
assert(len(match_row)<=1)
except:
print('error with query:', match_row)
# IOU = 0.0 for mismatch cases
if match_row.empty:
return 0.
ground_truth_xywh = tuple(match_row.iloc[0,2:6])
return IOU(predicted_xywh, ground_truth_xywh)
def validate_total_score(default_box, valid_dir='valid_heatmap'):
npy_list = os.listdir(valid_dir)
with open('valid.txt', 'r') as f:
fname_list = f.readlines()
fname_list = [s.strip('\n') for s in fname_list]
prediction_dict = {}
for i in range(440):
prediction_dict[i] = []
for npy_name in npy_list:
if not npy_name.endswith('.npy'):
continue
data = np.load(os.path.join(valid_dir, npy_name))
img_id = int(npy_name.split('.')[0].split('_')[1])
k = int(npy_name.split('.')[0].split('_')[2])
# predict default_box
prediction_sent = (class_list[k], default_box[k][0], default_box[k][1], default_box[k][2], default_box[k][3])
prediction_dict[img_id].append(prediction_sent)
if np.isnan(data).any():
continue
img_width, img_height = 224, 224
w_k, h_k = (default_box[k][2:] * (1 / RESCALE_FACTOR)).astype(np.int)
# Find local maxima
neighborhood_size = 100
threshold = .1
data_max = filters.maximum_filter(data, neighborhood_size)
maxima = (data == data_max)
data_min = filters.minimum_filter(data, neighborhood_size)
diff = ((data_max - data_min) > threshold)
maxima[diff == 0] = 0
for _ in range(5):
maxima = binary_dilation(maxima)
labeled, num_objects = ndimage.label(maxima)
slices = ndimage.find_objects(labeled)
xy = np.array(ndimage.center_of_mass(data, labeled, range(1, num_objects+1)))
for pt in xy:
if data[int(pt[0]), int(pt[1])] > np.max(data)*.9:
upper = int(max(pt[0]-(h_k/2), 0.))
left = int(max(pt[1]-(w_k/2), 0.))
right = int(min(left+w_k, img_width))
lower = int(min(upper+h_k, img_height))
if lower == img_height and not k in [1]:
# avoid bbox touching bottom
continue
elif k in [5]:
# avoid predicting low acc classes
continue
else:
prediction_sent = (class_list[k], (left+CROP_DEL)*RESCALE_FACTOR, (upper+CROP_DEL)*RESCALE_FACTOR,
(right-left)*RESCALE_FACTOR, (lower-upper)*RESCALE_FACTOR)
prediction_dict[img_id].append(prediction_sent)
# calculate IOU score
bbox_df = preprocess_bbox_df()
iou_sum = 0.
iou25_count, iou50_count = 0, 0
box_count = 0
for img_id in range(len(prediction_dict)):
for pred in prediction_dict[img_id][:10]:
iou = validate_score(pred[1:], bbox_df, img_id, pred[0])
iou_sum += iou
iou25_count += 1 if iou > .25 else 0
iou50_count += 1 if iou > .50 else 0
box_count = box_count + 1
iou_avg = iou_sum / box_count
iou25_avg = iou25_count / box_count
iou50_avg = iou50_count / box_count
iou_score = (iou25_avg + iou50_avg) / 2
#print('total box_count =', box_count)
#print('average IOU =', iou_avg)
#print('average score at T(0.25) =', iou25_avg)
#print('average score at T(0.50) =', iou50_avg)
return iou_score
if __name__ == '__main__':
print(IOU((3., 3., 2., 2.), (1., 1., 3., 2.5)))