forked from cernohorsky/QFH-Antenna-868MHz
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathQFH-Antenna.scad
264 lines (206 loc) · 7.77 KB
/
QFH-Antenna.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
// OpenSCAD script for a "quadrifilar helix antenna".
// The design originated in: http://www.thingiverse.com/thing:634205
PI = 3.14159265358979;
include <parameters.scad>
CYLH2 = CYLH/2; // the half-height of the support cylinder.
HWIRE11 = CYLH2-HH1/2; // place the four hole-pairs at these heights.
HWIRE12 = CYLH2-HH2/2;
HWIRE21 = CYLH2+HH1/2;
HWIRE22 = CYLH2+HH2/2;
lightening_hole_size = (D1 * PI)/15;
lightening_hole_num = floor(CYLH/lightening_hole_size);
// some internal calculations. quite hairy math.
THETA1 = atan2(HH1,D1*PI/2); // Thetas are used for projecting the wirechannel cross-section onto the xy-plane.
THETA2 = atan2(HH2,D2*PI/2);
echo("theta1=",THETA1," - theta2=",THETA2);
XSI1 = ((CYLH/HH1*180)-180); // extra rotation beyond the height of helix1. half above, half below.
XSI2 = ((CYLH/HH2*180)-180); // extra rotation beyond the height of helix2.
echo("xsi1=",XSI1," - xsi2=",XSI2);
//------------ Safety grid parameters---------------------------
nY = 5;
nX = 5;
meshX=D1*1.1;
meshY=D2*1.1;
CornerSquareSize = 20;
// width of solid part of grid
meshSolid=1.2;
meshSpaceX = (meshX - meshSolid*nX)/nX;
meshSpaceY = (meshY - meshSolid*nY)/nY;
// Addition of circles with thorns - parameters
ThornsDist = 16.9706;
ThornCircleRad = 4;
ThornHeight = 10;
ThornLowerBaseRad = 2.5;
ThornUpperBaseRad = 0.4;
CoaxHoleRad = 5; // Radius of hole for coaxial cable
ThornsRot = 90; // Rotation of thorns
module base(){
difference(){
union()
{
for (i=[0:nX]) {
translate([i*(meshSolid+meshSpaceX) - meshSolid/2,0,0]) cube(size=[meshSolid, meshY, pedestal_height],center=false);
}
for (i=[0:nY]) {
translate([0,i*(meshSolid+meshSpaceY) - meshSolid/2,0]) cube(size=[meshX, meshSolid, pedestal_height],center=false);
}
// Addition of solid squares in corners
translate([- meshSolid/2,- meshSolid/2,0])
cube([CornerSquareSize,CornerSquareSize,pedestal_height]);
translate([nX*(meshSolid+meshSpaceX)+ meshSolid/2-CornerSquareSize,- meshSolid/2,0])
cube([CornerSquareSize,CornerSquareSize,pedestal_height]);
translate([nX*(meshSolid+meshSpaceX)+ meshSolid/2-CornerSquareSize,nY*(meshSolid+meshSpaceY)+ meshSolid/2-CornerSquareSize,0])
cube([CornerSquareSize,CornerSquareSize,pedestal_height]);
translate([- meshSolid/2,nY*(meshSolid+meshSpaceY)+ meshSolid/2-CornerSquareSize,0])
cube([CornerSquareSize,CornerSquareSize,pedestal_height]);
// Addition of circles with thorns
translate([nX*(meshSolid+meshSpaceX)/2, nY*(meshSolid+meshSpaceY)/2,pedestal_height/2]) // Grid center
rotate([0,0,ThornsRot])
{
translate([ThornsDist/2, ThornsDist/2,0])
union(){
cylinder(pedestal_height,ThornCircleRad,ThornCircleRad,center = true);
translate([0,0,ThornHeight/2])
cylinder(ThornHeight, ThornLowerBaseRad,ThornUpperBaseRad, true);
}
translate([ThornsDist/2, -ThornsDist/2,0])
union(){
cylinder(pedestal_height,ThornCircleRad,ThornCircleRad,center = true);
translate([0,0,ThornHeight/2])
cylinder(ThornHeight, ThornLowerBaseRad,ThornUpperBaseRad, true);
}
translate([-ThornsDist/2, -ThornsDist/2,0])
union(){
cylinder(pedestal_height,ThornCircleRad,ThornCircleRad,center = true);
translate([0,0,ThornHeight/2])
cylinder(ThornHeight, ThornLowerBaseRad,ThornUpperBaseRad, true);
}
}
// Hole for coaxial cable - part 1
translate([nX*(meshSolid+meshSpaceX)/2, nY*(meshSolid+meshSpaceY)/2,pedestal_height/2])
rotate([0,0,ThornsRot])
translate([-16.22/2, 16.1/2,0])
cylinder(pedestal_height,CoaxHoleRad+meshSolid,CoaxHoleRad+meshSolid,center = true);
}
// Hole for coaxial cable - part 2
translate([nX*(meshSolid+meshSpaceX)/2, nY*(meshSolid+meshSpaceY)/2,pedestal_height/2])
rotate([0,0,ThornsRot])
translate([-16.22/2, 16.1/2,-1])
cylinder(pedestal_height+3,CoaxHoleRad,CoaxHoleRad,center = true);
}
}
// definition of the wire channel by CSG.
// used for projecting outline onto the xy-plane.
module wirechannel()
{
difference()
{
translate([-0.5,0,0])
cube(size = [2*WIRE, 2*WIRE,2], center=true);
cylinder(h=2, d=WIRE, center=true);
translate([1.5*WIRE,0,0])
cube([3*WIRE,WIRE,4], center=true);
}
}
// definition of elliptic cylinder by CSG.
// used for projecting outline onto xy-plane.
module ellipse_base()
{
scale([1,D2/D1,1])
difference(){
cylinder(h=1, r=(D1/2-WIRE/2), center = true);
cylinder(h=2, r=(D1/2 - WIRE/2 - EXTRUSION_WIDTH), center = true);
}
}
// the composite structure of support cylinder, wire channels, holes and cut-outs.
module composite()
{
difference()
{
union()
{
// combine all elements in one extrude and twist.
// helix1's.
linear_extrude(height=HWIRE21, twist=-XSI1/2-180, slices=SLICES)
{
rotate([0,0,0-XSI1/2])
translate([D1/2,0,0])
projection()
scale([1,1/sin(THETA1),1])
wirechannel();
rotate([0,0,180-XSI1/2])
translate([D1/2,0,0])
projection()
scale([1,1/sin(THETA1),1])
wirechannel();
}
// helix2's.
linear_extrude(height=HWIRE22, twist=-XSI2/2-180, slices=SLICES)
{
rotate([0,0,90-XSI2/2])
translate([D2/2,0,0])
projection()
scale([1,1/sin(THETA2),1])
wirechannel();
rotate([0,0,270-XSI2/2])
translate([D2/2,0,0])
projection()
scale([1,1/sin(THETA2),1])
wirechannel();
}
// elliptic support cylinder.
linear_extrude(height=CYLH, twist=-XSI1/2-180, slices=SLICES)
{
rotate([0,0,0-XSI1/2]) projection(cut=true) ellipse_base();
}
}
union()
{
// lower hole pairs.
translate([0,0,HWIRE11])
rotate([0,90,0])
color([0,0,1])
cylinder(h=D1, d=WIRE, center=true);
translate([0,0,HWIRE12])
rotate([90,0,0])
color([0,1,0])
cylinder(h=D2, d=WIRE, center=true);
// upper hole slots.
// large loop (blue)
translate([0,0,HWIRE21])
rotate([0,90,0])
color([0,0,1])
cylinder(h=D1, d=WIRE, center=true);
// small loop (green)
translate([0,0,HWIRE22])
rotate([90,0,0])
color([0,1,0])
cylinder(h=D2, d=WIRE, center=true);
translate([0,0,HWIRE21+CYLH2]) cube([CYLH,WIRE,CYLH], center=true);
translate([0,0,HWIRE22+CYLH2]) cube([WIRE,CYLH,CYLH], center=true);
for (i=[0:lightening_hole_num]) {
translate([0,0,i*lightening_hole_size])
rotate([0,0, +45 - XSI1/2 + i * ((180+XSI1/2)/(lightening_hole_num))])
rotate([45,0,0])
cube(size = [D1,lightening_hole_size,lightening_hole_size],center=true);
}
for (i=[0:lightening_hole_num]) {
translate([0,0,i*lightening_hole_size])
rotate([0,0, -45 -XSI2/2 + i * ((180+XSI2/2)/lightening_hole_num)])
rotate([45,0,0])
cube(size = [D1,lightening_hole_size,lightening_hole_size],center=true);
}
}
}
translate([-meshX/2,-meshY/2,0])
base();
}
//wirechannel();
//ellipse_base();
//base();
// MAIN()
composite();
// QFHBAL Dimensions
#linear_extrude(height = 5, center = true)
rotate([0,0,-45-90])
import(file = "QFHBAL01/hw/cam_profi/QFHBAL01-User_Comments.dxf");