-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathMEC_kailugaji.m
47 lines (47 loc) · 1.51 KB
/
MEC_kailugaji.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
function [label,iter_FCM, para_miu, NegativeLogLikelihood, responsivity]=MEC_kailugaji(data, K, label_old, gama)
% Input:
% K: number of cluster
% data: dataset, N*D
% label_old: initializing label. N*1
% Output:
% label: results of cluster. N*1
% iter_FCM: iterations
% Written by kailugaji. ([email protected])
format long
%% initializing parameters
esp=1e-6; % stopping criterion for iteration
max_iter=100; % maximum number of iterations
fitness=zeros(max_iter,1);
[data_num,data_dim]=size(data);
distant=zeros(data_num, K);
responsivity=zeros(data_num,K);
para_miu=zeros(K, data_dim);
%% initializing the cluster center
for k=1:K
X_k=data(label_old==k, :);
para_miu(k, :)=mean(X_k); % the center of each cluster
end
%% Maximum entropy clustering algorithm
for t=1:max_iter
% (X-para_miu)^2=X^2+para_miu^2-2*para_miu*X'. data_num*K
for k=1:K
distant(:,k)=sum((data-repmat(para_miu(k, :), data_num, 1)).^2,2); %N*1
end
% update membership. data_num*K
R_up=exp(-distant./gama);
responsivity= R_up./repmat(sum(R_up,2), 1, K);
% update center. K*data_dim
miu_up=(responsivity')*data;
para_miu=miu_up./((sum(responsivity))'*ones(1,data_dim));
% object function
fitness(t)=sum(sum(responsivity.*distant))+gama.*sum(sum((responsivity.*log(responsivity+eps))));
if t>1
if abs(fitness(t)-fitness(t-1))<esp
break;
end
end
end
iter_FCM=t; % iterations
NegativeLogLikelihood=fitness(iter_FCM);
%% clustering
[~,label]=max(responsivity,[],2);