forked from vdobrovolskii/wl-coref
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcoval.py
244 lines (192 loc) · 7.65 KB
/
coval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# copied from coval, with some modifications
# https://github.com/ns-moosavi/coval
from collections import Counter
import numpy as np
# This is only used in the ceaf methods. We may want to implement this
# locally to avoid the scipy dependency.
from scipy.optimize import linear_sum_assignment
# Terminology here is consistent with papers in the field but kind of confusing
# Key = gold data, System = predictions.
def get_cluster_info(predicted_clusters, gold_clusters):
p2g = get_markable_assignments(predicted_clusters, gold_clusters)
g2p = get_markable_assignments(gold_clusters, predicted_clusters)
# this is the data format used as input by the evaluator
return (gold_clusters, predicted_clusters, g2p, p2g)
def get_markable_assignments(inp_clusters, out_clusters):
markable_cluster_ids = {}
out_dic = {}
for cluster_id, cluster in enumerate(out_clusters):
for m in cluster:
out_dic[m] = cluster_id
for cluster in inp_clusters:
for im in cluster:
for om in out_dic:
if im == om:
markable_cluster_ids[im] = out_dic[om]
break
return markable_cluster_ids
def f1(p_num, p_den, r_num, r_den, beta=1):
p = 0 if p_den == 0 else p_num / float(p_den)
r = 0 if r_den == 0 else r_num / float(r_den)
return 0 if p + r == 0 else (1 + beta * beta) * p * r / (beta * beta * p + r)
def evaluate_non_referrings(doc_non_referring_infos):
tp, tn, fp, fn = 0, 0, 0, 0
for doc_id in doc_non_referring_infos:
key_non_referrings, sys_non_referrings = doc_non_referring_infos[doc_id]
for m in key_non_referrings:
if m in sys_non_referrings:
tp += 1
else:
fn += 1
for m in sys_non_referrings:
if m not in key_non_referrings:
fp += 1
recall = tp / float(tp + fn) if (tp + fn) > 0 else 0
precision = tp / float(tp + fp) if (tp + fp) > 0 else 0
f1 = (
2 * recall * precision / (recall + precision) if (recall + precision) > 0 else 0
)
return recall, precision, f1
class Evaluator:
def __init__(self, metric, beta=1, keep_aggregated_values=False):
self.p_num = 0
self.p_den = 0
self.r_num = 0
self.r_den = 0
self.metric = metric
self.beta = beta
self.keep_aggregated_values = keep_aggregated_values
if keep_aggregated_values:
self.aggregated_p_num = []
self.aggregated_p_den = []
self.aggregated_r_num = []
self.aggregated_r_den = []
def update(self, coref_info):
(
key_clusters,
sys_clusters,
key_mention_sys_cluster,
sys_mention_key_cluster,
) = coref_info
if self.metric == ceafe or self.metric == ceafm:
pn, pd, rn, rd = self.metric(sys_clusters, key_clusters)
elif self.metric == lea:
pn, pd = self.metric(sys_clusters, key_clusters, sys_mention_key_cluster)
rn, rd = self.metric(key_clusters, sys_clusters, key_mention_sys_cluster)
else:
pn, pd = self.metric(sys_clusters, sys_mention_key_cluster)
rn, rd = self.metric(key_clusters, key_mention_sys_cluster)
self.p_num += pn
self.p_den += pd
self.r_num += rn
self.r_den += rd
if self.keep_aggregated_values:
self.aggregated_p_num.append(pn)
self.aggregated_p_den.append(pd)
self.aggregated_r_num.append(rn)
self.aggregated_r_den.append(rd)
def get_f1(self):
return f1(self.p_num, self.p_den, self.r_num, self.r_den, beta=self.beta)
def get_recall(self):
return 0 if self.r_num == 0 else self.r_num / float(self.r_den)
def get_precision(self):
return 0 if self.p_num == 0 else self.p_num / float(self.p_den)
def get_prf(self):
return self.get_precision(), self.get_recall(), self.get_f1()
def get_counts(self):
return self.p_num, self.p_den, self.r_num, self.r_den
def get_aggregated_values(self):
return (
self.aggregated_p_num,
self.aggregated_p_den,
self.aggregated_r_num,
self.aggregated_r_den,
)
def evaluate_documents(doc_coref_infos, metric, beta=1):
evaluator = Evaluator(metric, beta=beta)
for doc_id in doc_coref_infos:
evaluator.update(doc_coref_infos[doc_id])
return (evaluator.get_recall(), evaluator.get_precision(), evaluator.get_f1())
def get_document_evaluations(doc_coref_infos, metric, beta=1):
evaluator = Evaluator(metric, beta=beta, keep_aggregated_values=True)
for doc_id in doc_coref_infos:
evaluator.update(doc_coref_infos[doc_id])
return evaluator.get_aggregated_values()
def mentions(clusters, mention_to_gold):
setofmentions = set(mention for cluster in clusters for mention in cluster)
correct = setofmentions & set(mention_to_gold.keys())
return len(correct), len(setofmentions)
def b_cubed(clusters, mention_to_gold):
num, den = 0, 0
for c in clusters:
gold_counts = Counter()
correct = 0
for m in c:
if m in mention_to_gold:
gold_counts[mention_to_gold[m]] += 1
for c2 in gold_counts:
correct += gold_counts[c2] * gold_counts[c2]
num += correct / float(len(c))
den += len(c)
return num, den
def muc(clusters, mention_to_gold):
tp, p = 0, 0
for c in clusters:
p += len(c) - 1
tp += len(c)
linked = set()
for m in c:
if m in mention_to_gold:
linked.add(mention_to_gold[m])
else:
tp -= 1
tp -= len(linked)
return tp, p
def phi4(c1, c2):
return 2 * len([m for m in c1 if m in c2]) / float(len(c1) + len(c2))
def phi3(c1, c2):
return len([m for m in c1 if m in c2])
def ceafe(clusters, gold_clusters):
clusters = [c for c in clusters]
scores = np.zeros((len(gold_clusters), len(clusters)))
for i in range(len(gold_clusters)):
for j in range(len(clusters)):
scores[i, j] = phi4(gold_clusters[i], clusters[j])
row_ind, col_ind = linear_sum_assignment(-scores)
similarity = scores[row_ind, col_ind].sum()
return similarity, len(clusters), similarity, len(gold_clusters)
def ceafm(clusters, gold_clusters):
clusters = [c for c in clusters]
scores = np.zeros((len(gold_clusters), len(clusters)))
for i in range(len(gold_clusters)):
for j in range(len(clusters)):
scores[i, j] = phi3(gold_clusters[i], clusters[j])
row_ind, col_ind = linear_sum_assignment(-scores)
similarity = scores[row_ind, col_ind].sum()
return similarity, len(clusters), similarity, len(gold_clusters)
def lea(input_clusters, output_clusters, mention_to_gold):
num, den = 0, 0
for c in input_clusters:
if len(c) == 1:
all_links = 1
if (
c[0] in mention_to_gold
and len(output_clusters[mention_to_gold[c[0]]]) == 1
):
common_links = 1
else:
common_links = 0
else:
common_links = 0
all_links = len(c) * (len(c) - 1) / 2.0
for i, m in enumerate(c):
if m in mention_to_gold:
for m2 in c[i + 1 :]:
if (
m2 in mention_to_gold
and mention_to_gold[m] == mention_to_gold[m2]
):
common_links += 1
num += len(c) * common_links / float(all_links)
den += len(c)
return num, den