Skip to content

Latest commit

 

History

History
280 lines (219 loc) · 8.23 KB

241028-prompt-templates.md

File metadata and controls

280 lines (219 loc) · 8.23 KB

Prompt templates

prompt templates introduction

what is prompt template

提示词模版的作用就是将用户的输入和参数转变成指令给到 LLM

how to use prompt template

string promptTemplates

这类提示词模版通常被用于格式化单一的字符串,通常用于简单的输入。

实现要点: 使用 from_template 方法来实现

from langchain_core.prompts import PromptTemplate

prompt_template = PromptTemplate.from_template("Tell me a joke about {topic}")

prompt_template.invoke({"topic": "cats"})

chatPromptTemplates

用于格式化一组消息

实现要点: 使用 ChatPromptTemplate

from langchain_core.prompts import ChatPromptTemplate

prompt_template = ChatPromptTemplate([
    ("system", "You are a helpful assistant"),
    ("user", "Tell me a joke about {topic}")
])

prompt_template.invoke({"topic": "cats"})

messagePlaceholder

这类提示词模版,用于在指定的地方加入一个消息数组

实现要点: 使用 ChatPromptTemplate & MessagesPlaceholder

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import HumanMessage

prompt_template = ChatPromptTemplate([
    ("system", "You are a helpful assistant"),
    MessagesPlaceholder("msgs")
])

prompt_template.invoke({"msgs": [HumanMessage(content="hi!")]})

# other method
prompt_template = ChatPromptTemplate([
    ("system", "You are a helpful assistant"),
    ("placeholder", "{msgs}") # <-- This is the changed part
])

how to use few shot examples-FewShotPromptTemplate

使用 FewShotPromptTemplate

why need fee shot examples

给 LLM 提供少量的示例,是简单且有效的提升 LLM 表现的方式

how to use fee shot examples

use a set of examples

  1. create a formatter for few-shot examples
from langchain_core.prompts import PromptTemplate

example_prompt = PromptTemplate.from_template("Question: {question}\n{answer}")
  1. create example set
examples = [
    {
        "question": "Who lived longer, Muhammad Ali or Alan Turing?",
        "answer": """
Are follow up questions needed here: Yes.
Follow up: How old was Muhammad Ali when he died?
Intermediate answer: Muhammad Ali was 74 years old when he died.
Follow up: How old was Alan Turing when he died?
Intermediate answer: Alan Turing was 41 years old when he died.
So the final answer is: Muhammad Ali
""",
    },
    {
        "question": "When was the founder of craigslist born?",
        "answer": """
Are follow up questions needed here: Yes.
Follow up: Who was the founder of craigslist?
Intermediate answer: Craigslist was founded by Craig Newmark.
Follow up: When was Craig Newmark born?
Intermediate answer: Craig Newmark was born on December 6, 1952.
So the final answer is: December 6, 1952
""",
    },
    {
        "question": "Who was the maternal grandfather of George Washington?",
        "answer": """
Are follow up questions needed here: Yes.
Follow up: Who was the mother of George Washington?
Intermediate answer: The mother of George Washington was Mary Ball Washington.
Follow up: Who was the father of Mary Ball Washington?
Intermediate answer: The father of Mary Ball Washington was Joseph Ball.
So the final answer is: Joseph Ball
""",
    }
]
  1. use FewShotPromptTemplate
from langchain_core.prompts import FewShotPromptTemplate

prompt = FewShotPromptTemplate(
    examples=examples,
    example_prompt=example_prompt,
    suffix="Question: {input}",
    input_variables=["input"],
)

print(
    prompt.invoke({"input": "Who was the father of Mary Ball Washington?"}).to_string()
)

use an example selector

使用 SemanticSimilarityExampleSelector 的实例来根据用户输入从示例中选择最相似的示例

from langchain_chroma import Chroma
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_openai import OpenAIEmbeddings

example_selector = SemanticSimilarityExampleSelector.from_examples(
    # This is the list of examples available to select from.
    examples,
    # This is the embedding class used to produce embeddings which are used to measure semantic similarity.
    OpenAIEmbeddings(),
    # This is the VectorStore class that is used to store the embeddings and do a similarity search over.
    Chroma,
    # This is the number of examples to produce.
    k=1,
)

prompt = FewShotPromptTemplate(
    example_selector=example_selector,
    example_prompt=example_prompt,
    suffix="Question: {input}",
    input_variables=["input"],
)

print(
    prompt.invoke({"input": "Who was the father of Mary Ball Washington?"}).to_string()
)

how to use few shot example to chat model -FewShotChatMessagePromptTemplates

使用 FewShotChatMessagePromptTemplates 类来实现给聊天机器人提供一些简单示例

use fixed examples

from langchain_core.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate
from langchain_openai import ChatOpenAI

examples = [
    {"input": "2 🦜 2", "output": "4"},
    {"input": "2 🦜 3", "output": "5"},
]

# This is a prompt template used to format each individual example.
example_prompt = ChatPromptTemplate.from_messages(
    [
        ("human", "{input}"),
        ("ai", "{output}"),
    ]
)
few_shot_prompt = FewShotChatMessagePromptTemplate(
    example_prompt=example_prompt,
    examples=examples,
)

final_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a wondrous wizard of math."),
        few_shot_prompt,
        ("human", "{input}"),
    ]
)

chain = final_prompt | model

chain.invoke({"input": "What is 2 🦜 9?"})

use example selector

from langchain_chroma import Chroma
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_openai import OpenAIEmbeddings

examples = [
    {"input": "2 🦜 2", "output": "4"},
    {"input": "2 🦜 3", "output": "5"},
    {"input": "2 🦜 4", "output": "6"},
    {"input": "What did the cow say to the moon?", "output": "nothing at all"},
    {
        "input": "Write me a poem about the moon",
        "output": "One for the moon, and one for me, who are we to talk about the moon?",
    },
]

to_vectorize = [" ".join(example.values()) for example in examples]
embeddings = OpenAIEmbeddings()
vectorstore = Chroma.from_texts(to_vectorize, embeddings, metadatas=examples)

example_selector = SemanticSimilarityExampleSelector(
    vectorstore=vectorstore,
    k=2,
)

from langchain_core.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate

# Define the few-shot prompt.
few_shot_prompt = FewShotChatMessagePromptTemplate(
    # The input variables select the values to pass to the example_selector
    input_variables=["input"],
    example_selector=example_selector,
    # Define how each example will be formatted.
    # In this case, each example will become 2 messages:
    # 1 human, and 1 AI
    example_prompt=ChatPromptTemplate.from_messages(
        [("human", "{input}"), ("ai", "{output}")]
    ),
)

final_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a wondrous wizard of math."),
        few_shot_prompt,
        ("human", "{input}"),
    ]
)

print(few_shot_prompt.invoke(input="What's 3 🦜 3?"))