- Prompt templates
提示词模版的作用就是将用户的输入和参数转变成指令给到 LLM
这类提示词模版通常被用于格式化单一的字符串,通常用于简单的输入。
实现要点: 使用 from_template
方法来实现
from langchain_core.prompts import PromptTemplate
prompt_template = PromptTemplate.from_template("Tell me a joke about {topic}")
prompt_template.invoke({"topic": "cats"})
用于格式化一组消息
实现要点: 使用 ChatPromptTemplate
类
from langchain_core.prompts import ChatPromptTemplate
prompt_template = ChatPromptTemplate([
("system", "You are a helpful assistant"),
("user", "Tell me a joke about {topic}")
])
prompt_template.invoke({"topic": "cats"})
这类提示词模版,用于在指定的地方加入一个消息数组
实现要点: 使用 ChatPromptTemplate
& MessagesPlaceholder
类
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import HumanMessage
prompt_template = ChatPromptTemplate([
("system", "You are a helpful assistant"),
MessagesPlaceholder("msgs")
])
prompt_template.invoke({"msgs": [HumanMessage(content="hi!")]})
# other method
prompt_template = ChatPromptTemplate([
("system", "You are a helpful assistant"),
("placeholder", "{msgs}") # <-- This is the changed part
])
使用 FewShotPromptTemplate
类
给 LLM 提供少量的示例,是简单且有效的提升 LLM 表现的方式
- create a formatter for few-shot examples
from langchain_core.prompts import PromptTemplate
example_prompt = PromptTemplate.from_template("Question: {question}\n{answer}")
- create example set
examples = [
{
"question": "Who lived longer, Muhammad Ali or Alan Turing?",
"answer": """
Are follow up questions needed here: Yes.
Follow up: How old was Muhammad Ali when he died?
Intermediate answer: Muhammad Ali was 74 years old when he died.
Follow up: How old was Alan Turing when he died?
Intermediate answer: Alan Turing was 41 years old when he died.
So the final answer is: Muhammad Ali
""",
},
{
"question": "When was the founder of craigslist born?",
"answer": """
Are follow up questions needed here: Yes.
Follow up: Who was the founder of craigslist?
Intermediate answer: Craigslist was founded by Craig Newmark.
Follow up: When was Craig Newmark born?
Intermediate answer: Craig Newmark was born on December 6, 1952.
So the final answer is: December 6, 1952
""",
},
{
"question": "Who was the maternal grandfather of George Washington?",
"answer": """
Are follow up questions needed here: Yes.
Follow up: Who was the mother of George Washington?
Intermediate answer: The mother of George Washington was Mary Ball Washington.
Follow up: Who was the father of Mary Ball Washington?
Intermediate answer: The father of Mary Ball Washington was Joseph Ball.
So the final answer is: Joseph Ball
""",
}
]
- use
FewShotPromptTemplate
from langchain_core.prompts import FewShotPromptTemplate
prompt = FewShotPromptTemplate(
examples=examples,
example_prompt=example_prompt,
suffix="Question: {input}",
input_variables=["input"],
)
print(
prompt.invoke({"input": "Who was the father of Mary Ball Washington?"}).to_string()
)
使用 SemanticSimilarityExampleSelector
的实例来根据用户输入从示例中选择最相似的示例
from langchain_chroma import Chroma
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_openai import OpenAIEmbeddings
example_selector = SemanticSimilarityExampleSelector.from_examples(
# This is the list of examples available to select from.
examples,
# This is the embedding class used to produce embeddings which are used to measure semantic similarity.
OpenAIEmbeddings(),
# This is the VectorStore class that is used to store the embeddings and do a similarity search over.
Chroma,
# This is the number of examples to produce.
k=1,
)
prompt = FewShotPromptTemplate(
example_selector=example_selector,
example_prompt=example_prompt,
suffix="Question: {input}",
input_variables=["input"],
)
print(
prompt.invoke({"input": "Who was the father of Mary Ball Washington?"}).to_string()
)
使用 FewShotChatMessagePromptTemplates
类来实现给聊天机器人提供一些简单示例
from langchain_core.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate
from langchain_openai import ChatOpenAI
examples = [
{"input": "2 🦜 2", "output": "4"},
{"input": "2 🦜 3", "output": "5"},
]
# This is a prompt template used to format each individual example.
example_prompt = ChatPromptTemplate.from_messages(
[
("human", "{input}"),
("ai", "{output}"),
]
)
few_shot_prompt = FewShotChatMessagePromptTemplate(
example_prompt=example_prompt,
examples=examples,
)
final_prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a wondrous wizard of math."),
few_shot_prompt,
("human", "{input}"),
]
)
chain = final_prompt | model
chain.invoke({"input": "What is 2 🦜 9?"})
from langchain_chroma import Chroma
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_openai import OpenAIEmbeddings
examples = [
{"input": "2 🦜 2", "output": "4"},
{"input": "2 🦜 3", "output": "5"},
{"input": "2 🦜 4", "output": "6"},
{"input": "What did the cow say to the moon?", "output": "nothing at all"},
{
"input": "Write me a poem about the moon",
"output": "One for the moon, and one for me, who are we to talk about the moon?",
},
]
to_vectorize = [" ".join(example.values()) for example in examples]
embeddings = OpenAIEmbeddings()
vectorstore = Chroma.from_texts(to_vectorize, embeddings, metadatas=examples)
example_selector = SemanticSimilarityExampleSelector(
vectorstore=vectorstore,
k=2,
)
from langchain_core.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate
# Define the few-shot prompt.
few_shot_prompt = FewShotChatMessagePromptTemplate(
# The input variables select the values to pass to the example_selector
input_variables=["input"],
example_selector=example_selector,
# Define how each example will be formatted.
# In this case, each example will become 2 messages:
# 1 human, and 1 AI
example_prompt=ChatPromptTemplate.from_messages(
[("human", "{input}"), ("ai", "{output}")]
),
)
final_prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a wondrous wizard of math."),
few_shot_prompt,
("human", "{input}"),
]
)
print(few_shot_prompt.invoke(input="What's 3 🦜 3?"))