forked from ReactionMechanismGenerator/RMG-Py
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgenerateFluxDiagram.py
618 lines (525 loc) · 27.1 KB
/
generateFluxDiagram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
This script generates a video showing the flux diagram for a given reaction
model as it evolves in time. It takes as its lone required argument the path
to an RMG-Py input file corresponding to a job that has already been run.
This script will automatically read from the necessary output files to extract
the information needed to generate the flux diagram.
"""
import os.path
import re
import math
import numpy
import pydot
from rmgpy.chemkin import loadChemkinFile
from rmgpy.rmg.main import RMG
from rmgpy.solver.base import TerminationTime, TerminationConversion
from rmgpy.solver.simple import SimpleReactor
################################################################################
# Here you can set the default values for options that control the generated
# flux diagrams.
# Options controlling the individual flux diagram renderings:
program = 'dot' # The program to use to lay out the nodes and edges
maximumNodeCount = 50 # The maximum number of nodes to show in the diagram
maximumEdgeCount = 50 # The maximum number of edges to show in the diagram
concentrationTolerance = 1e-6 # The lowest fractional concentration to show (values below this will appear as zero)
speciesRateTolerance = 1e-6 # The lowest fractional species rate to show (values below this will appear as zero)
maximumNodePenWidth = 10.0 # The thickness of the border around a node at maximum concentration
maximumEdgePenWidth = 10.0 # The thickness of the edge at maximum species rate
# Options controlling the ODE simulations:
initialTime = 1e-12 # The time at which to initiate the simulation, in seconds
timeStep = 10**0.1 # The multiplicative factor to use between consecutive time points
absoluteTolerance = 1e-16 # The absolute tolerance to use in the ODE simluations
relativeTolerance = 1e-8 # The relative tolerance to use in the ODE simulations
# Options controlling the generated movie:
framesPerSecond = 6 # The number of frames per second in the generated movie
initialPadding = 5 # The number of seconds to display the initial fluxes at the start of the video
finalPadding = 5 # The number of seconds to display the final fluxes at the end of the video
################################################################################
def generateFluxDiagram(reactionModel, times, concentrations, reactionRates, outputDirectory, centralSpecies=None, speciesDirectory=None, settings=None):
"""
For a given `reactionModel` and simulation results stored as arrays of
`times`, species `concentrations`, and `reactionRates`, generate a series
of flux diagrams as frames of an animation, then stitch them together into
a movie. The individual frames and the final movie are saved on disk at
`outputDirectory.`
"""
global maximumNodeCount, maximumEdgeCount, timeStep, concentrationTolerance, speciesRateTolerance
# Allow user defined settings for flux diagram generation if given
if settings:
maximumNodeCount = settings['maximumNodeCount']
maximumEdgeCount = settings['maximumEdgeCount']
timeStep = settings['timeStep']
concentrationTolerance = settings['concentrationTolerance']
speciesRateTolerance = settings['speciesRateTolerance']
# Get the species and reactions corresponding to the provided concentrations and reaction rates
speciesList = reactionModel.core.species[:]
numSpecies = len(speciesList)
reactionList = reactionModel.core.reactions[:]
numReactions = len(reactionList)
#search index of central species:
if centralSpecies is not None:
for i, species in enumerate(speciesList):
if species.label == centralSpecies:
centralSpeciesIndex = i
break
# Compute the rates between each pair of species (big matrix warning!)
speciesRates = numpy.zeros((len(times),numSpecies,numSpecies), numpy.float64)
for index, reaction in enumerate(reactionList):
rate = reactionRates[:,index]
if not reaction.pairs: reaction.generatePairs()
for reactant, product in reaction.pairs:
reactantIndex = speciesList.index(reactant)
productIndex = speciesList.index(product)
speciesRates[:,reactantIndex,productIndex] += rate
speciesRates[:,productIndex,reactantIndex] -= rate
# Determine the maximum concentration for each species and the maximum overall concentration
maxConcentrations = numpy.max(numpy.abs(concentrations), axis=0)
maxConcentration = numpy.max(maxConcentrations)
# Determine the maximum rate for each species-species pair and the maximum overall species-species rate
maxSpeciesRates = numpy.max(numpy.abs(speciesRates), axis=0)
maxSpeciesRate = numpy.max(maxSpeciesRates)
speciesIndex = maxSpeciesRates.reshape((numSpecies*numSpecies)).argsort()
# Determine the nodes and edges to keep
nodes = []; edges = []
if centralSpecies is None:
for i in range(numSpecies*numSpecies):
productIndex, reactantIndex = divmod(speciesIndex[-i-1], numSpecies)
if reactantIndex > productIndex:
# Both reactant -> product and product -> reactant are in this list,
# so only keep one of them
continue
if maxSpeciesRates[reactantIndex, productIndex] == 0:
break
if reactantIndex not in nodes and len(nodes) < maximumNodeCount: nodes.append(reactantIndex)
if productIndex not in nodes and len(nodes) < maximumNodeCount: nodes.append(productIndex)
if len(nodes) > maximumNodeCount:
break
edges.append([reactantIndex, productIndex])
if len(edges) >= maximumEdgeCount:
break
else:
nodes.append(centralSpeciesIndex)
for index, reaction in enumerate(reactionList):
for reactant, product in reaction.pairs:
reactantIndex = speciesList.index(reactant)
productIndex = speciesList.index(product)
if maxSpeciesRates[reactantIndex, productIndex] == 0:
break
if len(nodes) > maximumNodeCount or len(edges) >= maximumEdgeCount:
break
if reactantIndex == centralSpeciesIndex:
if productIndex not in nodes:
nodes.append(productIndex)
edges.append([reactantIndex, productIndex])
if productIndex == centralSpeciesIndex:
if reactantIndex not in nodes:
nodes.append(reactantIndex)
edges.append([reactantIndex, productIndex])
# Create the master graph
# First we're going to generate the coordinates for all of the nodes; for
# this we use the thickest pen widths for all nodes and edges
graph = pydot.Dot('flux_diagram', graph_type='digraph', overlap="false")
graph.set_rankdir('LR')
graph.set_fontname('sans')
graph.set_fontsize('10')
# Add a node for each species
for index in nodes:
species = speciesList[index]
node = pydot.Node(name=species.label)
node.set_penwidth(maximumNodePenWidth)
graph.add_node(node)
# Try to use an image instead of the label
speciesIndex = str(species) + '.png'
imagePath = ''
if not speciesDirectory or not os.path.exists(speciesDirectory):
continue
for root, dirs, files in os.walk(speciesDirectory):
for f in files:
if f.endswith(speciesIndex):
imagePath = os.path.join(root, f)
break
if os.path.exists(imagePath):
node.set_image(imagePath)
node.set_label(" ")
# Add an edge for each species-species rate
for reactantIndex, productIndex in edges:
if reactantIndex in nodes and productIndex in nodes:
reactant = speciesList[reactantIndex]
product = speciesList[productIndex]
edge = pydot.Edge(reactant.label, product.label)
edge.set_penwidth(maximumEdgePenWidth)
graph.add_edge(edge)
# Generate the coordinates for all of the nodes using the specified program
graph = pydot.graph_from_dot_data(graph.create_dot(prog=program))
# Now iterate over the time points, setting the pen widths appropriately
# This should preserve the coordinates of the nodes from frame to frame
frameNumber = 1
for t in range(len(times)):
# Update the nodes
slope = -maximumNodePenWidth / math.log10(concentrationTolerance)
for index in nodes:
species = speciesList[index]
node = graph.get_node('{0}'.format(species.label))[0]
concentration = concentrations[t,index] / maxConcentration
if concentration < concentrationTolerance:
penwidth = 0.0
else:
penwidth = slope * math.log10(concentration) + maximumNodePenWidth
node.set_penwidth(penwidth)
# Update the edges
slope = -maximumEdgePenWidth / math.log10(speciesRateTolerance)
for index in range(len(edges)):
reactantIndex, productIndex = edges[index]
if reactantIndex in nodes and productIndex in nodes:
reactant = speciesList[reactantIndex]
product = speciesList[productIndex]
edge = graph.get_edge('{0}'.format(reactant.label), '{0}'.format(product.label))[0]
# Determine direction of arrow based on sign of rate
speciesRate = speciesRates[t,reactantIndex,productIndex] / maxSpeciesRate
if speciesRate < 0:
edge.set_dir("back")
speciesRate = -speciesRate
else:
edge.set_dir("forward")
# Set the edge pen width
if speciesRate < speciesRateTolerance:
penwidth = 0.0
edge.set_dir("none")
else:
penwidth = slope * math.log10(speciesRate) + maximumEdgePenWidth
edge.set_penwidth(penwidth)
# Save the graph at this time to a dot file and a PNG image
if times[t] == 0:
label = 't = 0 s'
else:
label = 't = 10^{0:.1f} s'.format(math.log10(times[t]))
graph.set_label(label)
if t == 0:
repeat = framesPerSecond * initialPadding
elif t == len(times) - 1:
repeat = framesPerSecond * finalPadding
else:
repeat = 1
for r in range(repeat):
graph.write_dot(os.path.join(outputDirectory, 'flux_diagram_{0:04d}.dot'.format(frameNumber)))
graph.write_png(os.path.join(outputDirectory, 'flux_diagram_{0:04d}.png'.format(frameNumber)))
frameNumber += 1
# Use mencoder to stitch the PNG images together into a movie
import subprocess
command = ('mencoder',
'mf://*.png',
'-mf',
'type=png:fps={0:d}'.format(framesPerSecond),
'-ovc',
'lavc',
'-lavcopts',
'vcodec=mpeg4',
'-oac',
'copy',
'-o',
'flux_diagram.avi',
)
subprocess.check_call(command, cwd=outputDirectory)
################################################################################
def simulate(reactionModel, reactionSystem, settings = None):
"""
Generate and return a set of core and edge species and reaction fluxes
by simulating the given `reactionSystem` using the given `reactionModel`.
"""
global maximumNodeCount, maximumEdgeCount, timeStep, concentrationTolerance, speciesRateTolerance
# Allow user defined settings for flux diagram generation if given
if settings:
maximumNodeCount = settings['maximumNodeCount']
maximumEdgeCount = settings['maximumEdgeCount']
timeStep = settings['timeStep']
concentrationTolerance = settings['concentrationTolerance']
speciesRateTolerance = settings['speciesRateTolerance']
coreSpecies = reactionModel.core.species
coreReactions = reactionModel.core.reactions
edgeSpecies = reactionModel.edge.species
edgeReactions = reactionModel.edge.reactions
# numCoreSpecies = len(coreSpecies)
# numCoreReactions = len(coreReactions)
# numEdgeSpecies = len(edgeSpecies)
# numEdgeReactions = len(edgeReactions)
speciesIndex = {}
for index, spec in enumerate(coreSpecies):
speciesIndex[spec] = index
reactionSystem.initializeModel(coreSpecies, coreReactions, edgeSpecies, edgeReactions, [], absoluteTolerance, relativeTolerance)
# Copy the initial conditions to use in evaluating conversions
y0 = reactionSystem.y.copy()
time = []
coreSpeciesConcentrations = []
coreReactionRates = []
edgeReactionRates = []
nextTime = initialTime
terminated = False; iteration = 0
while not terminated:
# Integrate forward in time to the next time point
reactionSystem.advance(nextTime)
iteration += 1
time.append(reactionSystem.t)
coreSpeciesConcentrations.append(reactionSystem.coreSpeciesConcentrations)
coreReactionRates.append(reactionSystem.coreReactionRates)
edgeReactionRates.append(reactionSystem.edgeReactionRates)
# Finish simulation if any of the termination criteria are satisfied
for term in reactionSystem.termination:
if isinstance(term, TerminationTime):
if reactionSystem.t > term.time.value_si:
terminated = True
break
elif isinstance(term, TerminationConversion):
index = speciesIndex[term.species]
if (y0[index] - reactionSystem.y[index]) / y0[index] > term.conversion:
terminated = True
break
# Increment destination step time if necessary
if reactionSystem.t >= 0.9999 * nextTime:
nextTime *= timeStep
time = numpy.array(time)
coreSpeciesConcentrations = numpy.array(coreSpeciesConcentrations)
coreReactionRates = numpy.array(coreReactionRates)
edgeReactionRates = numpy.array(edgeReactionRates)
return time, coreSpeciesConcentrations, coreReactionRates, edgeReactionRates
################################################################################
def loadChemkinOutput(outputFile, reactionModel):
"""
Load the species concentrations from a Chemkin Output file in a simulation
and generate the reaction rates at each time point.
"""
import rmgpy.constants as constants
from rmgpy.quantity import Quantity
coreReactions = reactionModel.core.reactions
edgeReactions = reactionModel.edge.reactions
speciesList = reactionModel.core.species
time = []
coreSpeciesConcentrations = []
coreReactionRates = []
edgeReactionRates = []
with open(outputFile, 'r') as f:
line = f.readline()
while line != '' and 'SPECIFIED END' not in line:
line.strip()
tokens = line.split()
if ' TIME ' in line:
# Time is in seconds
time.append(float(tokens[-2]))
elif ' PRESSURE ' in line:
# Pressure from Chemkin is in atm
P = Quantity(float(tokens[-2]),'atm')
elif ' TEMPERATURE ' in line:
# Temperature from Chemkin in in K
T = Quantity(float(tokens[-2]),'K')
elif ' MOLE FRACTIONS ' in line:
# Species always come in the same order as listed in chem.inp
molefractions = []
line = f.readline() # This one reads the blank line which follows
line = f.readline()
while line.strip() != '':
tokens = line.split()
for value in tokens[2::3]:
# Make all concentrations positive
if value.find('-') == 0:
value = value.replace('-','',1)
# Sometimes chemkin removes the `E` in scientific notation due to lack of space,
# rendering invalid float values. If this is the case, add it in.
if value.find('-') != -1:
if value.find('E') == -1:
value = value.replace('-','E-')
molefractions.append(float(value))
line = f.readline()
totalConcentration = P.value_si/constants.R/T.value_si
coreSpeciesConcentrations.append([molefrac*totalConcentration for molefrac in molefractions])
coreRates = []
edgeRates = []
for reaction in coreReactions:
rate = reaction.getRateCoefficient(T.value_si,P.value_si)
for reactant in reaction.reactants:
rate *= molefractions[speciesList.index(reactant)]*totalConcentration
coreRates.append(rate)
for reaction in edgeReactions:
edgeRates.append(reaction.getRateCoefficient(T.value_si,P.value_si))
if coreRates:
coreReactionRates.append(coreRates)
if edgeRates:
edgeReactionRates.append(edgeRates)
line=f.readline()
time = numpy.array(time)
coreSpeciesConcentrations = numpy.array(coreSpeciesConcentrations)
coreReactionRates = numpy.array(coreReactionRates)
edgeReactionRates = numpy.array(edgeReactionRates)
return time, coreSpeciesConcentrations, coreReactionRates, edgeReactionRates
################################################################################
def loadRMGJavaJob(inputFile, chemkinFile=None, speciesDict=None):
"""
Load the results of an RMG-Java job generated from the given `inputFile`.
"""
from rmgpy.molecule import Molecule
# Load the specified RMG-Java input file
# This implementation only gets the information needed to generate flux diagrams
rmg = RMG()
rmg.loadRMGJavaInput(inputFile)
rmg.outputDirectory = os.path.abspath(os.path.dirname(inputFile))
# Load the final Chemkin model generated by RMG-Java
if not chemkinFile:
chemkinFile = os.path.join(os.path.dirname(inputFile), 'chemkin', 'chem.inp')
if not speciesDict:
speciesDict = os.path.join(os.path.dirname(inputFile), 'RMG_Dictionary.txt')
speciesList, reactionList = loadChemkinFile(chemkinFile, speciesDict)
# Bath gas species don't appear in RMG-Java species dictionary, so handle
# those as a special case
for species in speciesList:
if species.label == 'Ar':
species.molecule = [Molecule().fromSMILES('[Ar]')]
elif species.label == 'Ne':
species.molecule = [Molecule().fromSMILES('[Ne]')]
elif species.label == 'He':
species.molecule = [Molecule().fromSMILES('[He]')]
elif species.label == 'N2':
species.molecule = [Molecule().fromSMILES('N#N')]
# Map species in input file to corresponding species in Chemkin file
speciesDict = {}
for spec0 in rmg.initialSpecies:
for species in speciesList:
if species.isIsomorphic(spec0):
speciesDict[spec0] = species
break
# Generate flux pairs for each reaction if needed
for reaction in reactionList:
if not reaction.pairs: reaction.generatePairs()
# Replace species in input file with those in Chemkin file
for reactionSystem in rmg.reactionSystems:
reactionSystem.initialMoleFractions = dict([(speciesDict[spec], frac) for spec, frac in reactionSystem.initialMoleFractions.iteritems()])
for t in reactionSystem.termination:
if isinstance(t, TerminationConversion):
if t.species not in speciesDict.values():
t.species = speciesDict[t.species]
# Set reaction model to match model loaded from Chemkin file
rmg.reactionModel.core.species = speciesList
rmg.reactionModel.core.reactions = reactionList
# RMG-Java doesn't generate species images, so draw them ourselves now
speciesPath = os.path.join(os.path.dirname(inputFile), 'species')
try:
os.mkdir(speciesPath)
except OSError:
pass
for species in speciesList:
path = os.path.join(speciesPath + '/{0!s}.png'.format(species))
species.molecule[0].draw(str(path))
return rmg
################################################################################
def loadRMGPyJob(inputFile, chemkinFile=None, speciesDict=None):
"""
Load the results of an RMG-Py job generated from the given `inputFile`.
"""
# Load the specified RMG input file
rmg = RMG()
rmg.loadInput(inputFile)
rmg.outputDirectory = os.path.abspath(os.path.dirname(inputFile))
# Load the final Chemkin model generated by RMG
if not chemkinFile:
chemkinFile = os.path.join(os.path.dirname(inputFile), 'chemkin', 'chem.inp')
if not speciesDict:
speciesDict = os.path.join(os.path.dirname(inputFile), 'chemkin', 'species_dictionary.txt')
speciesList, reactionList = loadChemkinFile(chemkinFile, speciesDict)
# Map species in input file to corresponding species in Chemkin file
speciesDict = {}
for spec0 in rmg.initialSpecies:
for species in speciesList:
if species.isIsomorphic(spec0):
speciesDict[spec0] = species
break
# Generate flux pairs for each reaction if needed
for reaction in reactionList:
if not reaction.pairs: reaction.generatePairs()
# Replace species in input file with those in Chemkin file
for reactionSystem in rmg.reactionSystems:
reactionSystem.initialMoleFractions = dict([(speciesDict[spec], frac) for spec, frac in reactionSystem.initialMoleFractions.iteritems()])
for t in reactionSystem.termination:
if isinstance(t, TerminationConversion):
t.species = speciesDict[t.species]
# Set reaction model to match model loaded from Chemkin file
rmg.reactionModel.core.species = speciesList
rmg.reactionModel.core.reactions = reactionList
# Generate species images
speciesPath = os.path.join(os.path.dirname(inputFile), 'species')
try:
os.mkdir(speciesPath)
except OSError:
pass
for species in speciesList:
path = os.path.join(speciesPath, '{0!s}.png'.format(species))
if not os.path.exists(path):
species.molecule[0].draw(str(path))
return rmg
################################################################################
def createFluxDiagram(savePath, inputFile, chemkinFile, speciesDict, java = False, settings = None, chemkinOutput = '', centralSpecies = None):
"""
Generates the flux diagram based on a condition 'inputFile', chemkin.inp chemkinFile,
a speciesDict txt file, plus an optional chemkinOutput file.
"""
if java:
rmg = loadRMGJavaJob(inputFile, chemkinFile, speciesDict)
else:
rmg = loadRMGPyJob(inputFile, chemkinFile, speciesDict)
speciesPath = os.path.join(os.path.dirname(inputFile), 'species')
# if you have a chemkin output, then you only have one reactionSystem
if chemkinOutput:
try:
os.makedirs(os.path.join(savePath,'1'))
except OSError:
pass
print 'Extracting species concentrations and calculating reaction rates from chemkin output...'
time, coreSpeciesConcentrations, coreReactionRates, edgeReactionRates = loadChemkinOutput(chemkinOutput, rmg.reactionModel)
print 'Generating flux diagram for chemkin output...'
generateFluxDiagram(rmg.reactionModel, time, coreSpeciesConcentrations, coreReactionRates, os.path.join(savePath, '1'), centralSpecies, speciesPath, settings)
else:
# Generate a flux diagram video for each reaction system
for index, reactionSystem in enumerate(rmg.reactionSystems):
try:
os.makedirs(os.path.join(savePath,'{0:d}'.format(index+1)))
except OSError:
# Fail silently on any OS errors
pass
#rmg.makeOutputSubdirectory('flux/{0:d}'.format(index+1))
# If there is no termination time, then add one to prevent jobs from
# running forever
if not any([isinstance(term, TerminationTime) for term in reactionSystem.termination]):
reactionSystem.termination.append(TerminationTime((1e10,'s')))
print 'Conducting simulation of reaction system {0:d}...'.format(index+1)
time, coreSpeciesConcentrations, coreReactionRates, edgeReactionRates = simulate(rmg.reactionModel, reactionSystem, settings)
print 'Generating flux diagram for reaction system {0:d}...'.format(index+1)
generateFluxDiagram(rmg.reactionModel, time, coreSpeciesConcentrations, coreReactionRates, os.path.join(savePath, '{0:d}'.format(index+1)),
centralSpecies, speciesPath, settings)
################################################################################
if __name__ == '__main__':
# This might not work anymore because functions were modified for use with webserver
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('input', metavar='INPUT', type=str, nargs=1,
help='the RMG input file to use')
parser.add_argument('--java', action='store_true', help='process RMG-Java model')
args = parser.parse_args()
inputFile = os.path.abspath(args.input[0])
if args.java:
# The argument is an RMG-Java input file
rmg = loadRMGJavaJob(inputFile)
else:
# The argument is an RMG-Py input file
rmg = loadRMGPyJob(inputFile)
# Generate a flux diagram video for each reaction system
rmg.makeOutputSubdirectory('flux')
for index, reactionSystem in enumerate(rmg.reactionSystems):
rmg.makeOutputSubdirectory('flux/{0:d}'.format(index+1))
# If there is no termination time, then add one to prevent jobs from
# running forever
if not any([isinstance(term, TerminationTime) for term in reactionSystem.termination]):
reactionSystem.termination.append(TerminationTime((1e10,'s')))
speciesPath = os.path.join(os.path.dirname(inputFile), 'species')
print 'Conducting simulation of reaction system {0:d}...'.format(index+1)
time, coreSpeciesConcentrations, coreReactionRates, edgeReactionRates = simulate(rmg.reactionModel, reactionSystem)
centralSpecies = None
print 'Generating flux diagram for reaction system {0:d}...'.format(index+1)
generateFluxDiagram(rmg.reactionModel, time, coreSpeciesConcentrations, coreReactionRates, os.path.join(rmg.outputDirectory, 'flux', '{0:d}'.format(index+1)), centralSpecies, speciesPath)