-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
193 lines (160 loc) · 7.02 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# ----------------------------------------------------------------------
# HAP: Structure-Aware Masked Image Modeling for Human-Centric Perception
# Written by Junkun Yuan ([email protected])
# ----------------------------------------------------------------------
# Utils
# ----------------------------------------------------------------------
# References:
# MAE: https://github.com/facebookresearch/mae
# ----------------------------------------------------------------------
import os
import sys
import math
import random
import logging
import datetime
import builtins
import functools
import numpy as np
import torch
from torch._six import inf
import torch.distributed as dist
def fix_seed(cfg):
"""Fix the random seed for reproducibility."""
seed = max(cfg.SEED + cfg.DIST.RANK, 0)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = True
def adjust_learning_rate(optimizer, epoch, epochs, warmup_epochs, lr):
"""Decay the learning rate with half-cycle cosine after warmup."""
if epoch < warmup_epochs:
lr = lr * epoch / warmup_epochs
else:
# lr = lr_min + 0.5 * (lr_max - lr_min)(1 + cos(T_cur / T_all * pi))
lr = lr * 0.5 * (1. + math.cos(math.pi * (epoch - warmup_epochs) / (epochs - warmup_epochs)))
for param_group in optimizer.param_groups:
if "lr_scale" in param_group:
param_group["lr"] = lr * param_group["lr_scale"]
else:
param_group["lr"] = lr
return lr
@functools.lru_cache()
def create_logger(output_dir, rank, name, if_print):
"""Create logger to print and save log."""
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
logger.propagate = False
# Create formatter
fmt = '[%(asctime)s](%(filename)s %(lineno)d) %(message)s'
try:
from termcolor import colored
color_fmt = colored('[%(asctime)s]', 'green') + \
colored('(%(filename)s %(lineno)d) ', 'yellow') + \
'%(message)s'
except:
color_fmt = fmt
datefmt = f'%Y-%m-%d %H:%M:%S'
# Create console handlers for pre-set process
if if_print:
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(logging.DEBUG)
console_handler.setFormatter(logging.Formatter(fmt=color_fmt, datefmt=datefmt))
logger.addHandler(console_handler)
# Create file handlers
file_handler = logging.FileHandler(os.path.join(output_dir, f'log_rank{rank}.txt'), mode='a')
file_handler.setFormatter(logging.Formatter(fmt, datefmt))
logger.addHandler(file_handler)
return logger
# ----------------------------------------------------------------------
# Gradient normalization
class NativeScalerWithGradNormCount:
state_dict_key = "amp_scaler"
def __init__(self):
self._scaler = torch.cuda.amp.GradScaler()
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
self._scaler.scale(loss).backward(create_graph=create_graph)
if update_grad:
if clip_grad is not None:
assert parameters is not None
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
else:
self._scaler.unscale_(optimizer)
norm = get_grad_norm_(parameters)
self._scaler.step(optimizer)
self._scaler.update()
else:
norm = None
return norm
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
if norm_type == inf:
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
else:
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
return total_norm
# ----------------------------------------------------------------------
# ----------------------------------------------------------------------
# Distributed training settings
def setup_for_distributed(if_print):
"""Enable print on pre-set process."""
builtin_print = builtins.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if if_print or force:
now = datetime.datetime.now().time()
builtin_print('[{}] '.format(now), end='') # print with time stamp
builtin_print(*args, **kwargs)
builtins.print = print
def check_log_process(log, rank, local_rank):
"""Print and save log on pre-set process."""
if_master = (log == 'master') and (rank == 0) # on master process
if_node = (log == 'node') and (local_rank == 0) # on main process of each node
if_all = (log == 'all') # on all processes
return if_master or if_node or if_all
def init_distributed_mode(cfg):
"""Initialize distributed training."""
cfg.defrost()
if cfg.DIST.DIST_ON_ITP:
cfg.DIST.RANK = int(os.environ['OMPI_COMM_WORLD_RANK'])
cfg.DIST.WORLD_SIZE = int(os.environ['OMPI_COMM_WORLD_SIZE'])
cfg.DIST.LOCAL_RANK = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
cfg.DIST.DIST_URL = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
os.environ['LOCAL_RANK'] = str(cfg.DIST.LOCAL_RANK)
os.environ['RANK'] = str(cfg.DIST.RANK)
os.environ['WORLD_SIZE'] = str(cfg.DIST.WORLD_SIZE)
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
cfg.DIST.RANK = int(os.environ["RANK"])
cfg.DIST.WORLD_SIZE = int(os.environ['WORLD_SIZE'])
cfg.DIST.LOCAL_RANK = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
cfg.DIST.RANK = int(os.environ['SLURM_PROCID'])
cfg.DIST.LOCAL_RANK = cfg.DIST.RANK % torch.cuda.device_count()
else:
print('=> Not using distributed mode')
cfg.DIST.DIST_MODE = False
cfg.PRINT = True
setup_for_distributed(True)
return
cfg.DIST.DIST_MODE = True
torch.cuda.set_device(cfg.DIST.LOCAL_RANK)
print(f'=> Distributed init: url {cfg.DIST.DIST_URL} rank {cfg.DIST.RANK}) gpu {cfg.DIST.LOCAL_RANK}')
dist.init_process_group(backend=cfg.DIST.BACKEND, init_method=cfg.DIST.DIST_URL,
world_size=cfg.DIST.WORLD_SIZE, rank=cfg.DIST.RANK)
dist.barrier()
cfg.PRINT = check_log_process(cfg.DIST.LOG, cfg.DIST.RANK, cfg.DIST.LOCAL_RANK)
setup_for_distributed(cfg.PRINT)
cfg.freeze()
# ----------------------------------------------------------------------