forked from bmilde/deepschmatzing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsequence_cnn.py
1217 lines (955 loc) · 55.4 KB
/
sequence_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import sys
from collections import defaultdict
import argparse
import numpy as np
import theano
import lasagne
from lasagne_addon import *
from linear_confidence_model import *
import functools
#higher recrusion limit for large models
sys.setrecursionlimit(10000)
from lasagne import layers
from lasagne.layers import dnn
from lasagne import init
from sklearn import svm
from sklearn.cross_validation import KFold
from sklearn import linear_model
from sklearn.kernel_approximation import RBFSampler
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from lasagne.updates import *
from nolearn.lasagne import NeuralNet,BatchIterator
from nolearn_addon import *
import gc
#except ImportError:
from functools import partial
Conv2DLayer = layers.Conv2DLayer
MaxPool2DLayer = layers.MaxPool2DLayer
#This uses Cudnn from NVIDIA, see https://developer.nvidia.com/rdp/cudnn-download?sid=811949
#Conv2DLayer = dnn.Conv2DDNNLayer
#MaxPool2DLayer = dnn.MaxPool2DDNNLayer
DenseLayer = layers.DenseLayer
DropoutLayer = layers.DropoutLayer
from lasagne.nonlinearities import rectify,softmax
from sklearn.cross_validation import train_test_split
from sklearn.cross_validation import StratifiedShuffleSplit
from sklearn.metrics import classification_report,recall_score,accuracy_score,confusion_matrix,roc_curve,roc_auc_score
from sklearn.preprocessing import StandardScaler
from sklearn.lda import LDA
from sparse_filtering.sparse_filtering import SparseFiltering
from sklearn.decomposition import RandomizedPCA
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import RandomForestClassifier
import sklearn
import itertools
from sklearn import linear_model
from sklearn.svm import NuSVC
from feature_gen.energy import getEnergy
#plotting
from pylab import *
import matplotlib.pyplot
from utils import unspeech_utils,mean_substract
from feature_gen import energy,windowed_fbank
import scipy.stats
from scipy.stats import itemfreq
#pickle currently buggy with nolearn, using dill as replacement
#import cPickle as pickle
import dill as pickle
import os.path
def float32(k):
return np.cast['float32'](k)
def afterEpoch(nn, train_history):
#np.set_printoptions(threshold='nan')
weights = [w.get_value() for w in nn.get_all_params()]
#print weights
# Simple majority vote over many classifier class probabilities
def majority_vote(proba):
return np.bincount(np.argmax(proba, axis=1))
def weighted_majority_vote(proba,weights):
return np.bincount(np.argmax(proba, axis=1),weights=weights)
def serialize(data, filename):
with open(filename, 'wb') as f:
pickle.dump(data, f, protocol=-1)
def load(filename):
p = None
with open(filename, 'rb') as f:
p = pickle.load(f)
return(p)
# Load and construct feature vectors for a single logspec file id
def loadIdFeat(myid,dtype, window_size, step_size, stride, energy_filter=1.2):
logspec_features = np.load(myid+'.logspec.npy')
if(logspec_features.dtype != dtype):
logspec_features = logspec_features.astype(dtype, copy=False)
#logspec_features_filtered = energy.filterSpec(logspec_features,energy_filter)
feat = windowed_fbank.generate_feat(logspec_features,window_size,step_size,stride)
return feat
def loadBaselineData(ids):
feat_list = []
for utterance_id in ids:
utt_feat = np.load(utterance_id+'.baseline_feat.npy')
feat_list += [utt_feat]
X = np.array(feat_list)
return X
# Load specgrams and generate windowed feature vectors
def loadTrainData(ids,classes,window_size,step_size,stride,baseline_X=None,withAugmentedData=False):
ids_new = list(ids)
variants = []
if withAugmentedData:
#TODO: make this a command line parameter
variants = ['_lower','_higher']
for variant in variants:
ids_new += [myid+variant for myid in ids]
classes_new = list(classes)*(len(variants)+1)
else:
classes_new = classes
#iterate through all files and find out the space needed to store all data in memory
required_shape = [0,0]
for myid in ids_new:
#do not load array into memory yet
#logspec_features_disk = np.load(myid+'.logspec.npy',mmap_mode='r')
#feat_gen_shape = windowed_fbank.len_feat(logspec_features_disk.shape, window_size,step_size,stride)
feat_gen_shape = loadIdFeat(myid,'float32',window_size,step_size,stride).shape
required_shape[1] = feat_gen_shape[1]
required_shape[0] += feat_gen_shape[0]
# explicitly set X data to 32bit resolution and y data to 8 bit (256 possible classes)
X_data = np.zeros(required_shape,dtype='float32')
y_data = np.zeros(required_shape[0],dtype='uint8')
if baseline_X != None:
X2_data = np.zeros((required_shape[0],baseline_X.shape[1]),dtype='float32')
#now we will load the npy files into memory and generate features
pos = 0
i = 0
assert(len(classes_new)==len(ids_new))
for myid,myclass in itertools.izip(ids_new,classes_new):
feat = loadIdFeat(myid,'float32',window_size,step_size,stride)
feat_len = feat.shape[0]
feat_dim = feat.shape[1]
y_data[pos:pos+feat_len] = myclass
X_data[pos:pos+feat_len] = feat
if baseline_X != None:
X2_data[pos:pos+feat_len] = baseline_X[i]
pos += feat_len
i +=1
if baseline_X == None:
return X_data,y_data
else:
return X_data,X2_data,y_data
#Model configurration hyper parameters
class ModelConfig:
def __init__(self,learner,window_sizes,step_sizes,strides,class2num,max_epochs=1000,use_sparseFiltering=False,use_pca=True,stackSVM=True,pca_whiten=False,pca_components=100,learn_rates=0.1,momentum=0.9,minibatch_size=256,hid_layer_units=512,hid_layer_units_baseline = 512,dropouts=None,random_state=0,early_stopping_patience=100,iterations=1,computeBaseline=True,baselineClassifier = 'svm',mergeBaseline = False,use_linear_confidence = False, weightsFile='',preload_num_layers=-1):
self.deep_learner = learner
#feature generation and class config
self.window_sizes = window_sizes
self.no_classifiers = len(window_sizes)
self.step_sizes = step_sizes
self.strides = strides
self.pca_components = pca_components
self.class2num = class2num
self.max_epochs = max_epochs
self.epochs = max_epochs
self._no_langs = len(class2num.keys())
self._no_classes = self._no_langs
self.use_pca = use_pca
self.stackSVM = stackSVM
self.use_lda = False
self.use_sparseFiltering = use_sparseFiltering
self.pca_whiten = pca_whiten
#cnn/dnn config
self.learn_rates = learn_rates
self.minibatch_size = minibatch_size
self.hid_layer_units = hid_layer_units
self.hid_layer_units_baseline = hid_layer_units_baseline
self.dropouts = dropouts
self.computeBaseline = computeBaseline
self.baselineClassifier = baselineClassifier
if dropouts == None:
dropouts=[0.1,0.2,0.3,0.5,0.5,0.5]
elif isinstance( dropouts, ( int, long ) ):
dropouts_int = dropouts
dropouts=[dropouts_int for x in xrange(4)]
self.random_state = random_state
self.early_stopping_patience = early_stopping_patience
self.momentum = momentum
self.iterations = 1
self.mergeBaseline = mergeBaseline
self.use_linear_confidence = use_linear_confidence
self.weightsFile = weightsFile
self.preload_num_layers = preload_num_layers
#Model class that can be pickeled and once trained can be used for classification
class MyModel:
def __init__(self, config):
self._transforms = []
self._dbns = []
self._confidences = []
self._merged = []
self.baseline_clf = None
self.baseline_transforms = []
self.config = config
self.results = {}
#trains a baseline classifier on the baseline feature set
def trainBaseline(self,ids,classes):
def getTreeClf():
return RandomForestClassifier(n_estimators=self.config.hid_layer_units_baseline, n_jobs=-1, random_state=42, oob_score=True, verbose=1)
print 'Using',self.config.baselineClassifier,'as baseline classifier'
if self.config.baselineClassifier.lower() == 'none':
return
X = loadBaselineData(ids)
y = np.array(classes,dtype=np.int32)
scaler = StandardScaler(copy=False, with_mean=True, with_std=True).fit(X) #mean_substract.MeanNormalize(copy=False).fit(X)
X = scaler.transform(X)
self.baseline_transforms.append(scaler)
transform_clf = None
if self.config.baselineClassifier.lower() == 'svm':
self.baseline_clf = svm.LinearSVC(C=0.001)
X = X.astype(np.float64)
if self.config.baselineClassifier.lower() == 'svm_poly':
self.baseline_clf = svm.SVC(C=1.0, kernel='poly', probability=True, cache_size=2000, verbose = True)
if self.config.baselineClassifier.lower() == 'trees':
self.baseline_clf = getTreeClf()
if self.config.baselineClassifier.lower() == 'trees2x':
transform_clf = getTreeClf()
self.baseline_clf = getTreeClf()
if self.config.baselineClassifier.lower() == 'dnn' or self.config.baselineClassifier.lower() == 'trees_dnn':
if self.config.baselineClassifier.lower() == 'trees_dnn':
transform_clf = getTreeClf()
X = transform_clf.fit(X,y).transform(X)
self.baseline_transforms.append(transform_clf)
transform_clf = None
y = y.astype(np.int32)
X = X.astype(np.float32)
unspeech_utils.shuffle_in_unison(X,y)
print 'classes:',self.config._no_classes,'hid layers:',self.config.hid_layer_units_baseline
print 'shape for baseline classifier:',X.shape
self.baseline_clf = self.stdDnn((None, X.shape[1]))
if self.config.baselineClassifier.lower() == 'trees_svm':
transform_clf = getTreeClf()
self.baseline_clf = svm.LinearSVC(C=1.0)
if self.config.baselineClassifier.lower() == 'trees_svm_poly':
transform_clf = getTreeClf()
self.baseline_clf = svm.SVC(C=1.0, kernel='poly', probability=True, cache_size=2000, verbose = True)
print 'Configured baseline clf to:',self.baseline_clf
print 'Transform clf:',transform_clf
if transform_clf != None:
print 'Fitting transform clf...'
transform_clf.fit(X,y)
X = transform_clf.transform(X)
self.baseline_transforms.append(transform_clf)
if self.baseline_clf!=None:
print 'Fitting main classifier...'
self.baseline_clf.fit(X,y)
def stdDnn(self,input_shape,epochs=1000,eval_frac=0.0):
return NeuralNet(
layers=[ # three layers: one hidden layer
('input', layers.InputLayer),
('hidden1', DenseLayer),
('dropout1', DropoutLayer),
('hidden2', DenseLayer),
('dropout2', DropoutLayer),
('hidden3', DenseLayer),
('output', DenseLayer),
],
# layer parameters:
hidden1_nonlinearity = rectify, hidden2_nonlinearity = rectify, hidden3_nonlinearity = rectify,
#We use He-initilization, see He, Kaiming, et al. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. arXiv preprint arXiv:1502.01852 (2015).
hidden1_W=init.HeNormal(),hidden2_W=init.HeNormal(),hidden3_W=init.HeNormal(),
dropout1_p=0.5,
dropout2_p=0.5,
input_shape=input_shape, # a x b input pixels per batch
hidden1_num_units=self.config.hid_layer_units, # number of units in hidden layer
hidden2_num_units=self.config.hid_layer_units, # number of units in hidden layer
hidden3_num_units=self.config.hid_layer_units, # number of units in hidden layer
output_num_units=self.config._no_classes,
output_nonlinearity=lasagne.nonlinearities.softmax,
eval_size=eval_frac,
transform_layer_name = 'hidden3',
#on_epoch_finished=[AdjustVariable('update_learning_rate', start=self.config.learn_rates, stop=0.001),
#AdjustVariable('update_momentum', start=self.config.momentum, stop=0.99),],
#EarlyStopping(patience=self.config.early_stopping_patience)],
#batch_iterator_test=MyBatchIterator(128,forced_even=True),
#batch_iterator_train=MyBatchIterator(128,forced_even=True),
# optimization method:
update=adam,
#update_learning_rate=theano.shared(float32(self.config.learn_rates)),
#update_momentum=theano.shared(float32(self.config.momentum)),
#update
#update_learning_rate=self.config.learn_rates,
#update_momentum=momentum,
regression=False, # flag to indicate we're dealing with regression problem
max_epochs=epochs, # we want to train this many epochs
verbose=1,
)
def energyFeature(self,X,step_size):
X_energy = getEnergy(X)
#addes 1 to the shape of X_energy, and makes it possible to e.g. vstack it to some other feature vector
X_energy = np.expand_dims(X_energy, axis=1)
return X_energy
#Prepare corpus/generate (raw) features and train classifier
def trainClassifier(self,all_ids,classes,window_size,step_size,stride,deep_learner):
print 'Using', deep_learner, 'as classifier.'
print 'hid_layer_units',self.config.hid_layer_units
print 'use_sparseFiltering:',self.config.use_sparseFiltering
print 'use_pca',self.config.use_pca
print 'use_lda',self.config.use_lda
y_all = np.asarray(classes)
X_train,y_train = loadTrainData(all_ids, y_all, window_size, step_size,stride)
#shuffle training vectors (inplace) for minibatch gradient descent optimisers
unspeech_utils.shuffle_in_unison(X_train,y_train)
X_energy = self.energyFeature(X_train,step_size)
#Scale mean of all training vectors
std_scale = mean_substract.MeanNormalize(copy=False).fit(X_train)
X_train = std_scale.transform(X_train)
transform_clf = None
#Sanity check and warning, gpu needs float32
if(X_train.dtype != 'float32'):
print 'Warning, training data was not float32 after mean substract: ', X_train.dtype
X_train = X_train.astype('float32', copy=False)
#todo: switch to enable data caching / saving
#np.save('data/X_train',X_train)
#np.save('data/y_train',y_train)
#np.save('data/X_train_mean',std_scale._mean)
for iteration in xrange(self.config.iterations):
print 'iteration ', iteration,'/',self.config.iterations
print 'Starting dimensionally reduction'
#todo rename pca to dim reduction
if self.config.use_pca:
print 'using rpca'
pca = RandomizedPCA(n_components=self.config.pca_components, copy=False,
whiten=self.config.pca_whiten, random_state=random_state)
#Pca fit
pca.fit(X_train)
X_train = pca.transform(X_train)
else:
pca = None
if self.config.use_lda:
print 'using LDA'
pca = LDA(n_components=self.config.pca_components)
pca.fit(X_train,y_train)
#lda fit
X_train = pca.transform(X_train)
if self.config.use_sparseFiltering:
print 'using sparseFilterTransform'
#pca = sparseFilterTransform(N=hid_layer_units)
pca = SparseFiltering(n_features=self.config.hid_layer_units, maxfun=self.config.max_epochs, iprint=1, stack_orig=False)
pca.fit(X_train,y_train)
print 'fitted data, now transforming...'
print 'Shape before transform: ',X_train.shape
X_train = pca.transform(X_train)
print 'Shape after transform: ',X_train.shape
print 'ytrain shape:',y_train.shape
#if self.config.use_pca or self.config.use_lda or self.config.use_sparseFiltering:
# np.save('data/X_train_transformed',X_train)
print 'Done loading and transforming data, traindata size: ', float(X_train.nbytes) / 1024.0 / 1024.0, 'MB'
print 'Distribution of classes in train data:'
print itemfreq(y_train),self.config._no_langs
if(X_train.dtype != 'float32'):
print 'Warning, training data was not float32 after dim reduction: ', X_train.dtype
X_train = X_train.astype('float32', copy=False)
if deep_learner=='trees':
print 'Using trees classifier... (2 pass)'
transform_clf = None#RandomForestClassifier(n_estimators=50, n_jobs=-1, random_state=42, oob_score=True, verbose=1, compute_importances=True)
clf = RandomForestClassifier(n_estimators=self.config.hid_layer_units, n_jobs=-1, random_state=42, oob_score=True, verbose=1)
#print 'Feature selection...'
#print 'X_train shape:', X_train.shape
#X_train = transform_clf.fit(X_train, y_train).transform(X_train)
#print 'X_train after selection:', X_train.shape
#print transform_clf.feature_importances_
#clf = ExtraTreesClassifier(n_estimators=1000,
# max_features='auto',
# n_jobs=-1,
# random_state=42)
elif deep_learner=='svm':
clf = svm.LinearSVC(C=1.0)
elif deep_learner=='cnn':
momentum = 0.9
print 'conf: momentum:',self.config.momentum,'self.learn_rates:',self.config.learn_rates
feat_len = X_train.shape[1] / window_size
window_len = window_size
print '2D shape window:',window_len,'x','featlen:',feat_len
#todo: make sure y and x coordinates are not mixed up
X_train = X_train.reshape(-1, 1, window_len, feat_len)
print 'X_train shape:',X_train.shape
y_train = y_train.astype(np.int32)
clf = NeuralNet(
layers=[
('input', layers.InputLayer),
('conv1', Conv2DLayer),
('pool1', MaxPool2DLayer),
('dropout1', DropoutLayer),
('conv2', Conv2DLayer),
('pool2', MaxPool2DLayer),
('dropout2', DropoutLayer),
('conv3', Conv2DLayer),
('pool3', MaxPool2DLayer),
('dropout3', DropoutLayer),
('conv4', Conv2DLayer),
('pool4', MaxPool2DLayer),
('dropout4', DropoutLayer),
('hidden6', DenseLayer),
('dropout6', DropoutLayer),
('hidden7', DenseLayer),
#('dropout7', DropoutLayer),
#('hidden8', DenseLayer),
('output', DenseLayer),
],
input_shape=(None, 1, window_len, feat_len),
conv1_num_filters=32, conv1_filter_size=(3, 3), pool1_pool_size=(2, 2), #pool1_stride=(1, 1),
#conv1b_num_filters=32, conv1b_filter_size=(3, 3),
dropout1_p=self.config.dropouts[0],
conv2_num_filters=64, conv2_filter_size=(2, 2), pool2_pool_size=(2, 2), #pool2_stride=(1, 1),
#conv2b_num_filters=64, conv2b_filter_size=(2, 2),
dropout2_p=self.config.dropouts[1],
conv3_num_filters=128, conv3_filter_size=(2, 2), pool3_pool_size=(2, 2), pool3_stride=(1, 1),
#conv3b_num_filters=128, conv3b_filter_size=(2, 2),
dropout3_p=self.config.dropouts[2],
conv4_num_filters=128, conv4_filter_size=(2, 2), pool4_pool_size=(2, 2), pool4_stride=(1, 1),
dropout4_p=self.config.dropouts[3],
#conv5_num_filters=64, conv5_filter_size=(2, 2), pool5_pool_size=(2, 2), #pool5_stride=(1, 1),
#dropout5_p=self.config.dropouts[4],
hidden6_num_units=self.config.hid_layer_units, hidden7_num_units=self.config.hid_layer_units, #hidden8_num_units=self.config.hid_layer_units,
dropout6_p=self.config.dropouts[5],
#dropout7_p=self.config.dropouts[6],
output_num_units=self.config._no_classes,
transform_layer_name='hidden7',
#We use He-initilization, see He, Kaiming, et al. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. arXiv preprint arXiv:1502.01852 (2015).
conv1_W=init.HeNormal(), conv2_W=init.HeNormal(), conv3_W=init.HeNormal(),
#conv4_W=init.HeNormal(), #conv5_W=init.HeNormal(),
#conv1b_W=init.HeNormal(), conv2b_W=init.HeNormal(), conv3b_W=init.HeNormal(),
hidden6_W=init.HeNormal(), hidden7_W=init.HeNormal(), #hidden8_W=init.HeNormal(),
conv1_nonlinearity = rectify, conv2_nonlinearity = rectify, conv3_nonlinearity = rectify, #conv4_nonlinearity = rectify, #conv5_nonlinearity = rectify,
#conv1b_nonlinearity = rectify, conv2b_nonlinearity = rectify, conv3b_nonlinearity = rectify,
hidden6_nonlinearity = rectify, hidden7_nonlinearity = rectify, #hidden8_nonlinearity = rectify,
output_nonlinearity=lasagne.nonlinearities.softmax,
eval_size=0.01,
on_epoch_finished=[
AdjustVariable('update_learning_rate', start=self.config.learn_rates, stop=0.0001),
AdjustVariable('update_momentum', start=self.config.momentum, stop=0.999),
EarlyStopping(patience=self.config.early_stopping_patience),
],
batch_iterator_train=BatchIterator(batch_size=512),
batch_iterator_test=BatchIterator(batch_size=512),
#update=adam,
#update=rmsprop,
#update_learning_rate=1.0,
update=nesterov_momentum,
update_learning_rate=theano.shared(float32(self.config.learn_rates)),
update_momentum=theano.shared(float32(self.config.momentum)),
regression=False,
max_epochs=self.config.max_epochs,
verbose=1,
)
if self.config.weightsFile != '':
print 'Preload', self.config.preload_num_layers if self.config.preload_num_layers != -1 else 'all','weight layers from',self.config.weightsFile,'...'
clf.load_weights_from(self.config.weightsFile)#,self.config.preload_num_layers)
else:
print 'Using DNN as classifier'
y_train = y_train.astype(np.int32)
X_train = X_train.astype(np.float32)
print 'conf: momentum:',self.config.momentum,'self.learn_rates:',self.config.learn_rates
print 'X_train type:', X_train.dtype
print 'y_train type:', y_train.dtype
clf = self.stdDnn((None, X_train.shape[1]),self.config.max_epochs)
print 'fitting classifier...',deep_learner
clf.fit(X_train, y_train)
if deep_learner=='trees':
print clf.feature_importances_
serialize(clf.feature_importances_, 'models/feature_importances_iter'+str(iteration)+'.pickle')
print 'done!'
confidence_clf = None
merged_clf = None
if self.config.stackSVM:
transform_clf_new = clf
print 'Creating classifier embedding...'
X_train_embed = transform_clf_new.transform(X_train)
print 'Done!'
#rbf_transform = RBFSampler(gamma=1.0,n_components=500)
#print 'RBF-embed:',rbf_transform
#X_train_embed_rbf = rbf_transform.fit_transform(X_train_embed)
clf = linear_model.SGDClassifier(verbose=1, loss='log', n_iter=1000, n_jobs=-1)
print 'Fitting:',clf
clf.fit(X_train_embed, y_train)
print 'Done!'
transform_clf = Pipeline([('transform_clf_new',transform_clf_new)])#,('rbf_transform',rbf_transform)])
X_train = X_train_embed
elif self.config.mergeBaseline:
X_train_embed,y_train_embed = self.clf_and_baseline_embedding(all_ids,y_all,(std_scale,pca,transform_clf),clf,window_size, step_size, stride)
unspeech_utils.shuffle_in_unison(X_train_embed,y_train_embed)
print 'Embedded X_train shape:',X_train_embed.shape
print 'Embedded X_train content:',X_train_embed
print 'y_train_embed shape:',y_train_embed.shape
print 'y_train_embed',y_train_embed
merged_clf = self.stdDnn((None, X_train_embed.shape[1]),epochs=50,eval_frac=0.01)
#LogisticRegression()#svm.SVC(C=1.0, cache_size=2000,probability=True,kernel='linear')#self.stdDnn((None, X_train_embed.shape[1]),epochs=self.config.max_epochs,eval_frac=0.01)
#shuffle training vectors (inplace) for minibatch gradient descent optimisers
merged_clf.fit(X_train_embed, y_train_embed)
if self.config.use_linear_confidence:
#trains a linear regression model predicting confidence of
y_train_clf_proba = clf.predict_proba(X_train)
y_train_clf = np.argmax(y_train_clf_proba, axis=1)
mask = np.equal(y_train, y_train_clf)
print 'shapes (energy/y_train):',X_energy.shape,y_train_clf_proba.shape
#y_train_clf_proba = np.hstack([y_train_clf_proba,X_energy])
print 'new shape:',y_train_clf_proba.shape
confidence_y = mask.astype(np.float32)
print 'confidence value distribution:',np.bincount(confidence_y.astype(np.int32))
confidence_clf = LinearConfidenceModel(num_classproba=self.config._no_classes) #linear_model.ElasticNet(normalize=True) #linear_model.Ridge(alpha = .5)
confidence_clf.fit([y_train_clf_proba,X_energy],confidence_y)
if iteration < self.config.iterations-1:
#restrict samples to the ones that the classifier can correctly distinguish
y_train_clf = clf.predict(X_train)
mask = np.equal(y_train, y_train_clf)
y_train[mask] = self.config._no_langs
self.config._no_classes += 1
#hack to free now unneeded memory
#X_train.resize((0,0),refcheck=False)
#y_train.resize((0,0),refcheck=False)
#X_energy.resize((0,0),refcheck=False)
del X_train
del y_train
del X_energy
gc.collect()
return (std_scale,pca,transform_clf),clf,confidence_clf,merged_clf
def fit(self,all_ids,classes):
self._dbns,self._scalers,self.X_ids_train,self.X_ids_test,self.y_test_flat = [],[],None,None,None
#print 'len ids:', len(all_ids), 'classes:', len(classes)
if self.config.computeBaseline:
self.trainBaseline(all_ids,classes)
for i in xrange(self.config.no_classifiers):
if self.config.deep_learner:
print 'Train #',i,' dbn classifier with window_size:',self.config.window_sizes[i],'step_size=',self.config.step_sizes[i]
transforms,clf,confidence_clf,merged_clf = self.trainClassifier(all_ids,classes,self.config.window_sizes[i],self.config.step_sizes[i],self.config.strides[i],self.config.deep_learner)
self._dbns.append(clf)
self._transforms.append(transforms)
self._confidences.append(confidence_clf)
self._merged.append(merged_clf)
#fuse frame probabiltites, defaults to geometric mean
def fuse_op(self,frame_proba, op=scipy.stats.gmean, normalize=True):
no_classes = frame_proba.shape[0]
#nothing to fuse
if frame_proba.shape[1] < 2:
return frame_proba
fused_proba = op(frame_proba)
if len(fused_proba) < self.config._no_langs:
fused_proba.resize((self.config._no_langs,))
elif len(fused_proba) > self.config._no_langs:
fused_proba = fused_proba[:self.config._no_langs]
if normalize:
return unspeech_utils.normalize_unitlength(fused_proba)
else:
return fused_proba
def inspect_predict(self,utterance_id):
clf,transforms,confidence,window_size,step_size,stride = self._dbns[0],self._transforms[0],self._confidences[0],self.config.window_sizes[0],self.config.step_sizes[0],self.config.strides[0]
logspec_features = np.load(utterance_id+'.logspec.npy')
utterance = loadIdFeat(utterance_id,'float32',window_size, step_size, stride)
subplot(311)
imshow(logspec_features.T, aspect='auto', interpolation='nearest')
#subplot(512)
#imshow(utterance.T, aspect='auto', interpolation='nearest')
for transformer in transforms:
print 'transform:',transformer
if transformer != None:
utterance = transformer.transform(utterance)
utterance = utterance.astype(np.float32)
#2D reshape for cnn
if self.config.deep_learner=='cnn':
utterance_tensor = utterance.reshape(-1, 1, window_size, utterance.shape[1] / window_size)
print utterance_tensor.shape
#embedding,y_train = self.clf_embedding([utterance_id],[0],transforms,clf,window_size,step_size,stride)
embedding = clf.transform(utterance_tensor)
#subplot(513)
#imshow(utterance.T, aspect='auto', interpolation='nearest')
subplot(312)
imshow(embedding.T, aspect='auto', interpolation='nearest')
print 'calling classifier',utterance.dtype,utterance.shape
frame_proba = clf.predict_proba(utterance_tensor)
subplot(313)
imshow(frame_proba.T, aspect='auto', interpolation='nearest')
#subplot(514)
#weights = confidence.predict([frame_proba,self.energyFeature(utterance,step_size)])
#weights = np.expand_dims(weights, axis=1)
#imshow(weights.T, aspect='auto', interpolation='nearest')
#plot(range(len(weights)),weights)
show()
#use the transform function on the base classifier as base embedding (for dnn and cnn the last layer representation)
def clf_and_baseline_embedding(self,utt_ids, utt_y, transforms, clf,window_size, step_size, stride):
#print 'Building classifier embedding...'
baseline_X = self.baseline_embedding(utt_ids)
#print 'Baseline X shape:',baseline_X
#print 'Baseline X content:',baseline_X
X_train,X2_train,y_train = loadTrainData(utt_ids, utt_y, window_size, step_size, stride, baseline_X)
#print 'X_train shape:',X_train.shape
#print 'X_train content:',X_train
for transform in transforms:
if transform != None:
utterances = transform.transform(X_train)
if(utterances.dtype != 'float32'):
#print 'Warning, training data was not float32: ', utterance.dtype
utterances = utterances.astype('float32', copy=False)
#2D reshape for cnn
if self.config.deep_learner=='cnn':
utterances = utterances.reshape(-1, 1, window_size, utterances.shape[1] / window_size)
return np.hstack([clf.transform(utterances),X2_train]),y_train
def baseline_embedding(self, utt_ids):
print 'Building baselinge embedding...'
X = loadBaselineData(utt_ids)
for scaler in self.baseline_transforms:
X = scaler.transform(X)
X = X.astype(np.float32)
print 'Baseline embedding shape:',X.shape
return self.baseline_clf.transform(X)
#predict a whole
def predict_utterance(self,utterance_id):
if not self._dbns:
return
voting = []
multi_pred = []
for clf,confidence_clf,merged_clf,transforms,window_size,step_size,stride in itertools.izip(self._dbns,self._confidences,self._merged,self._transforms,self.config.window_sizes,self.config.step_sizes,self.config.strides):
utterance = loadIdFeat(utterance_id,'float32',window_size, step_size, stride)
X_energy = self.energyFeature(utterance,step_size)
for transform in transforms:
if transform != None:
if(utterance.dtype != 'float32'):
utterance = utterance.astype('float32', copy=False)
#Hacky: reshape utterance before transforming with CNN, as in the stackSVM case one of the transforms is going to be the CNN
if self.config.stackSVM and type(transform) is Pipeline:
utterance = utterance.reshape(-1, 1, window_size, utterance.shape[1] / window_size)
utterance = transform.transform(utterance)
if(utterance.dtype != 'float32'):
#print 'Warning, training data was not float32: ', utterance.dtype
utterance = utterance.astype('float32', copy=False)
#2D reshape for cnn
if self.config.deep_learner=='cnn' and not self.config.stackSVM:
utterance = utterance.reshape(-1, 1, window_size, utterance.shape[1] / window_size)
#hard decision per frame, agg with majority voting
#print 'calling classifier',utterance.dtype,utterance.shape
frame_proba = clf.predict_proba(utterance)
frame_proba_log = np.log(frame_proba)
frame_proba_with_energy = np.hstack([frame_proba,X_energy])
local_vote2 = self.fuse_op(frame_proba,op=majority_vote)
if confidence_clf:
weights = confidence_clf.predict([frame_proba,X_energy])
frame_proba_weighted = frame_proba * np.array([weights]).T
local_vote3 = self.fuse_op(frame_proba_weighted,op=np.add.reduce)
else:
local_vote3 = self.fuse_op(frame_proba,op=np.add.reduce)
if confidence_clf:
local_vote4 = self.fuse_op(frame_proba,op=functools.partial(weighted_majority_vote,weights=weights))
else:
local_vote4 = self.fuse_op(frame_proba,op=np.multiply.reduce)
#local_vote5 = self.fuse_op(frame_proba,op=np.maximum.reduce)
if confidence_clf and merged_clf!=None:
embedding,y_throwaway = self.clf_embedding([utterance_id],[0],transforms,clf,window_size, step_size, stride)
local_vote6 = self.fuse_op(merged_clf.predict_proba(embedding),op=functools.partial(weighted_majority_vote,weights=weights))
elif confidence_clf and self.baseline_clf!=None:
frame_proba_baseline = self.baselinePredictProba([utterance_id])[0]
local_vote6 = self.fuse_op(frame_proba+(frame_proba_baseline/3.0),op=functools.partial(weighted_majority_vote,weights=weights))
else:
local_vote6 = self.fuse_op(frame_proba_log,op=np.add.reduce)
#local_vote3 = self.fuse_op(frame_proba,op=np.multiply.reduce)
#local_vote4 = self.fuse_op(frame_proba,op=np.maximum.reduce)
voting += [local_vote2,local_vote3,local_vote4,local_vote6]
multi_pred += [np.argmax(local_vote2),np.argmax(local_vote3),np.argmax(local_vote4),np.argmax(local_vote6)]
#multi_pred_names = ['hmean','gmean','majority_vote','add.reduce','multiply.reduce','maximum.reduce','log add.reduce']
multi_pred_names = ['majority_vote',
'weighted_majority_add' if confidence_clf else 'add',
'weighted_majority_vote' if confidence_clf else 'mul',
'baseline_merge']
#print voting
#majority probability voting on utterance
pred = np.argmax(np.add.reduce(voting))
return pred,voting,multi_pred,multi_pred_names
def baselinePredictProba(self,dev_ids):
X = loadBaselineData(dev_ids)
for scaler in self.baseline_transforms:
X = scaler.transform(X)
X = X.astype(np.float32)
return self.baseline_clf.predict_proba(X)
def baselinePredict(self,dev_ids):
X = loadBaselineData(dev_ids)
for scaler in self.baseline_transforms:
X = scaler.transform(X)
X = X.astype(np.float32)
return self.baseline_clf.predict(X)
def writePredictionArff(self,outfilename,test_ids,class2num,num2class):
arff = ''
arff += '@relation ComParE2015_Eating_Predictions\n'
arff += '@attribute name string\n'
arff += '@attribute class { '
arff += ', '.join([num2class[i] for i in xrange(len(num2class))])
arff += ' }\n'
for i in xrange(len(num2class)):
arff += '@attribute score_'+num2class[i]+' numeric\n'
arff += '@data\n'
for test_id in sorted(test_ids):
pred,voting,multi_pred,multi_pred_names = self.predict_utterance(test_id)
proba = unspeech_utils.normalize_unitlength(np.add.reduce(voting))
print test_id,proba
arff += "'"+test_id.split('/')[-1]+".wav'" + ',' + num2class[pred] + ',' + ','.join([str(elem) for elem in proba]) + '\n'
with open(outfilename,'w') as outfile:
outfile.write(arff)
def performance_on_set(self,dev_ids,dev_classes,class2num):
#aggregated predictions by geometric mean
y_pred = []
#multiple single predictions of the classifiers
y_multi_pred = []
print 'Performance on dev set:'
return_recall_score = 0
#2 class labels out of a multiclass problem, i.e. 0 is one class and 1 is everything else
dev_classes_2class = (np.array(dev_classes)!=0).astype(np.int32)
if self.baseline_clf:
y_pred_baseline =self.baselinePredict(dev_ids)
return_recall_score = recall_score(dev_classes, y_pred_baseline, average='macro', pos_label=None)
print 'Baseline: '
self.results['baseline'] = print_classificationreport(dev_classes, y_pred_baseline)
print 'Baseline 2-class: '
self.results['baseline_2c'] = print_classificationreport(dev_classes_2class, (np.array(y_pred_baseline)!=0).astype(np.int32))
if len(self._dbns) > 0:
multi_pred_names = []
#now test on heldout ids (dev set)
for myid in dev_ids:
#print 'testing',myid
pred,proba,multi_pred,multi_pred_names = self.predict_utterance(myid)
y_multi_pred.append(multi_pred)
y_pred.append(pred)
print class2num
print 'Single classifier performance scores:'
for i in xrange(len(multi_pred)):
print 'Pred #',i,multi_pred_names[i],':'
#print 'Window size', window_sizes[i],'step size',step_sizes[i]
prediction = [pred[i] for pred in y_multi_pred]
prediction_2class = (np.array(prediction)!=0).astype(np.int32)
self.results[multi_pred_names[i]] = print_classificationreport(dev_classes, prediction)
print '+'*50
print 'Pred #',i,multi_pred_names[i],' 2-class :'
self.results[multi_pred_names[i]+'_2c'] = print_classificationreport(dev_classes_2class, prediction_2class)
print '*'*50
print ' '*50
print '*'*50
print ' '*50
print ' '*50
print class2num
print 'Fused scores:'
self.results['fused'] = print_classificationreport(dev_classes, y_pred)
print 'Fused scores 2-class:'
self.results['fused_2c'] = print_classificationreport(dev_classes_2class, (np.array(y_pred)!=0).astype(np.int32))
return_recall_score = recall_score(dev_classes, y_pred, average='macro', pos_label=None)
return return_recall_score
'''generic classification report for real_classes vs. predicted_classes'''
def print_classificationreport(real_classes, predicted_classes):
uaa= accuracy_score(real_classes, predicted_classes)
uar= recall_score(real_classes, predicted_classes, average='macro', pos_label=None)
report = classification_report(real_classes, predicted_classes)
confusion = confusion_matrix(real_classes, predicted_classes)
print 'Unweighted accuracy:', uaa
print 'Unweighted recall:', uar
print 'Classification report:'
print report
print 'Confusion matrix:\n%s' % confusion
return {'uaa':uaa,'uar':uar,'report':report,'confusion':confusion}
'''return the given set, with classes and name (usually train, dev, or test), as tuple of ids (list) and matching classes (list)'''
def load_set(classes,name,max_samples,class2num,withSpeakerInfo=False):
print classes
list_ids = []
list_classes = []
list_speakers = []
for myclass in classes:
#print myclass,name
if withSpeakerInfo:
ids,speakers = unspeech_utils.loadIdFile(args.filelists+name+'_'+myclass+'.txt',basedir=args.basedir,withSpeakerInfo=withSpeakerInfo)
else:
ids = unspeech_utils.loadIdFile(args.filelists+name+'_'+myclass+'.txt',basedir=args.basedir)
if max_samples != -1:
ids = ids[:max_samples]
if withSpeakerInfo:
speakers = speakers[:max_samples]
#set all speakers to the same speakers if speaker info os not available
for myid,speaker in zip(ids,speakers if withSpeakerInfo else ['0']*len(ids)):
list_ids.append(myid)
list_classes.append(class2num[myclass])
list_speakers.append(speaker)
return list_ids,list_classes,list_speakers
def train_dev_split(all_ids, classes, speakers, dev_speaker_sel):
train_ids, train_classes, train_speakers, dev_ids, dev_classes, dev_speakers = [],[],[],[],[],[]
for myid,myclass,speaker in zip(all_ids, classes, speakers):
print myid,myclass,speaker
if speaker in dev_speaker_sel:
dev_ids += [myid]
dev_classes += [myclass]