-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmedianDeNoise.pyx
40 lines (37 loc) · 1.22 KB
/
medianDeNoise.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
cimport numpy as np
cimport cython
@cython.boundscheck(False) # turn off bounds-checking for entire function
def fassum(np.uint8_t[:] arr):
cdef np.uint16_t sum
sum=0
for i in xrange(0,len(arr)):
sum=sum+arr[i]
return sum
def fasmean(np.uint8_t[:,:] arr):
cdef np.uint8_t[:] m
m=np.empty([3]).astype(np.uint8)
m[0]=fassum(arr[:,0])//8
m[1]=fassum(arr[:,1])//8
m[2]=fassum(arr[:,2])//8
return m
def medianDeNoise(np.uint8_t[:,:,:] imarray, int w, int h):
cdef np.uint8_t[:,:] neimat
neimat=np.empty([8,3],dtype=np.uint8)
cdef np.uint8_t[:] mean
cdef Py_ssize_t i,n
for i in range(1,h-1):
for n in range(1,w-1):
neimat[0]=imarray[i-1,n-1,:]
neimat[1]=imarray[i+1,n-1,:]
neimat[2]=imarray[i,n-1,:]
neimat[3]=imarray[i+1,n,:]
neimat[4]=imarray[i-1,n,:]
neimat[5]=imarray[i-1,n+1,:]
neimat[6]=imarray[i,n+1,:]
neimat[7]=imarray[i+1,n+1,:]
mean=np.asarray(fasmean(neimat)).astype(np.uint8)
imarray[i,n,:][0]=mean[0]
imarray[i,n,:][1]=mean[1]
imarray[i,n,:][2]=mean[2]
return np.asarray(imarray,dtype=np.uint8)