forked from andreasveit/coco-text
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoco_evaluation.py
352 lines (284 loc) · 12.8 KB
/
coco_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
__author__ = 'andreasveit'
__version__ = '1.3'
# Interface for evaluating with the COCO-Text dataset.
# COCO-Text is a large dataset designed for text detection and recognition.
# This is a Python API that assists in evaluating text detection and recognition results
# on COCO-Text. The format of the COCO-Text annotations is described on
# the project website http://vision.cornell.edu/se3/coco-text/. In addition to this evaluation API, please download
# the COCO-Text tool API, both the COCO images and annotations.
# This dataset is based on Microsoft COCO. Please visit http://mscoco.org/
# for more information on COCO, including for the image data, object annotatins
# and caption annotations.
# The following functions are defined:
# getDetections - Compute TP, FN and FP
# evaluateAttribute - Evaluates accuracy for classifying text attributes
# evaluateTranscription - Evaluates accuracy of transcriptions
# area, intersect, iou_score, decode, inter - small helper functions
# printDetailedResults - Prints detailed results as reported in COCO-Text paper
# COCO-Text Evaluation Toolbox. Version 1.3
# Data, Data API and paper available at: http://vision.cornell.edu/se3/coco-text/
# Code written by Andreas Veit, 2016.
# Licensed under the Simplified BSD License [see bsd.txt]
import editdistance
import copy
import re
# Compute detections
def getDetections(groundtruth, evaluation, imgIds = None, annIds = [], detection_threshold = 0.5):
"""
A box is a match iff the intersection of union score is >= 0.5.
Params
------
Input dicts have the format of annotation dictionaries
"""
#parameters
detectRes = {}
# results are lists of dicts {gt_id: xxx, eval_id: yyy}
detectRes['true_positives'] = []
detectRes['false_negatives'] = []
detectRes['false_positives'] = []
# the default is set to evaluate on the validation set
if imgIds == None:
imgIds = groundtruth.val
imgIds = imgIds if len(imgIds)>0 else inter(groundtruth.imgToAnns.keys(), evaluation.imgToAnns.keys())
for cocoid in imgIds:
gt_bboxes = groundtruth.imgToAnns[cocoid] if cocoid in groundtruth.imgToAnns else []
eval_bboxes = copy.copy(evaluation.imgToAnns[cocoid]) if cocoid in evaluation.imgToAnns else []
for gt_box_id in gt_bboxes:
gt_box = groundtruth.anns[gt_box_id]['bbox']
max_iou = 0.0
match = None
for eval_box_id in eval_bboxes:
eval_box = evaluation.anns[eval_box_id]['bbox']
iou = iou_score(gt_box,eval_box)
if iou >= detection_threshold and iou > max_iou:
max_iou = iou
match = eval_box_id
if match is not None:
detectRes['true_positives'].append({'gt_id': gt_box_id, 'eval_id': match})
eval_bboxes.remove(match)
else:
detectRes['false_negatives'].append({'gt_id': gt_box_id})
if len(eval_bboxes)>0:
detectRes['false_positives'].extend([{'eval_id': eval_box_id} for eval_box_id in eval_bboxes])
return detectRes
def evaluateAttribute(groundtruth, evaluation, resultDict, attributes):
'''
Input:
groundtruth_Dict: dict, AnnFile format
evalDict: dict, AnnFile format
resultDict: dict, output from getDetections
attributes : list of strings, attribute categories
-----
Output:
'''
assert 'utf8_string' not in attributes, 'there is a separate function for utf8_string'
res = {}
for attribute in attributes:
correct = []
incorrect = []
for detection in resultDict['true_positives']:
gt_val = groundtruth.anns[detection['gt_id']][attribute]
eval_val = evaluation.anns[detection['eval_id']][attribute]
if gt_val==eval_val:
correct.append(detection)
else:
if gt_val!='na':
incorrect.append(detection)
res[attribute] = {'attribute': attribute, 'correct':len(correct), 'incorrect':len(incorrect), 'accuracy':len(correct)*1.0/len(correct+incorrect)}
return res
def evaluateEndToEnd(groundtruth, evaluation, imgIds = None, annIds = [], detection_threshold = 0.5):
"""
A box is a match iff the intersection of union score is >= 0.5.
Params
------
Input dicts have the format of annotation dictionaries
"""
#parameters
detectRes = {}
# results are lists of dicts {gt_id: xxx, eval_id: yyy}
detectRes['true_positives'] = []
detectRes['false_negatives'] = []
detectRes['false_positives'] = []
# the default is set to evaluate on the validation set
if imgIds == None:
imgIds = groundtruth.val
imgIds = imgIds if len(imgIds)>0 else inter(groundtruth.imgToAnns.keys(), evaluation.imgToAnns.keys())
for cocoid in imgIds:
gt_bboxes = groundtruth.imgToAnns[cocoid] if cocoid in groundtruth.imgToAnns else []
eval_bboxes = copy.copy(evaluation.imgToAnns[cocoid]) if cocoid in evaluation.imgToAnns else []
for gt_box_id in gt_bboxes:
gt_box = groundtruth.anns[gt_box_id]['bbox']
if 'utf8_string' not in groundtruth.anns[gt_box_id]:
continue
gt_val = decode(groundtruth.anns[gt_box_id]['utf8_string'])
max_iou = 0.0
match = None
for eval_box_id in eval_bboxes:
eval_box = evaluation.anns[eval_box_id]['bbox']
iou = iou_score(gt_box,eval_box)
if iou >=detection_threshold and iou > max_iou:
max_iou = iou
match = eval_box_id
if 'utf8_string' in evaluation.anns[eval_box_id]:
eval_val = decode(evaluation.anns[eval_box_id]['utf8_string'])
if editdistance.eval(gt_val, eval_val)==0:
break
if match is not None:
detectRes['true_positives'].append({'gt_id': gt_box_id, 'eval_id': match})
eval_bboxes.remove(match)
else:
detectRes['false_negatives'].append({'gt_id': gt_box_id})
if len(eval_bboxes)>0:
detectRes['false_positives'].extend([{'eval_id': eval_box_id} for eval_box_id in eval_bboxes])
resultDict = detectRes
res = {}
for setting, threshold in zip(['exact', 'distance1'],[0,1]):
correct = []
incorrect = []
ignore = []
for detection in resultDict['true_positives']:
if 'utf8_string' not in groundtruth.anns[detection['gt_id']]:
ignore.append(detection)
continue
gt_val = decode(groundtruth.anns[detection['gt_id']]['utf8_string'])
if len(gt_val)<3:
ignore.append(detection)
continue
if 'utf8_string' not in evaluation.anns[detection['eval_id']]:
incorrect.append(detection)
continue
eval_val = decode(evaluation.anns[detection['eval_id']]['utf8_string'])
detection['gt_string'] = gt_val
detection['eval_string'] = eval_val
if editdistance.eval(gt_val, eval_val)<=threshold:
correct.append(detection)
else:
incorrect.append(detection)
res[setting] = {'setting': setting, 'correct':correct, 'incorrect':incorrect, 'ignore':ignore, 'accuracy':len(correct)*1.0/len(correct+incorrect)}
return res
def area(bbox):
return bbox[2] * 1.0 * bbox[3] # width * height
def intersect(bboxA, bboxB):
"""Return a new bounding box that contains the intersection of
'self' and 'other', or None if there is no intersection
"""
new_top = max(bboxA[1], bboxB[1])
new_left = max(bboxA[0], bboxB[0])
new_right = min(bboxA[0]+bboxA[2], bboxB[0]+bboxB[2])
new_bottom = min(bboxA[1]+bboxA[3], bboxB[1]+bboxB[3])
if new_top < new_bottom and new_left < new_right:
return [new_left, new_top, new_right - new_left, new_bottom - new_top]
return None
def iou_score(bboxA, bboxB):
"""Returns the Intersection-over-Union score, defined as the area of
the intersection divided by the intersection over the union of
the two bounding boxes. This measure is symmetric.
"""
if intersect(bboxA, bboxB):
intersection_area = area(intersect(bboxA, bboxB))
else:
intersection_area = 0
union_area = area(bboxA) + area(bboxB) - intersection_area
if union_area > 0:
return float(intersection_area) / float(union_area)
else:
return 0
def decode(trans):
trans = trans.encode("ascii" ,'ignore')
trans = trans.replace('\n', ' ')
trans2 = re.sub('[^a-zA-Z0-9!?@\_\-\+\*\:\&\/ \.]', '', trans)
return trans2.lower()
def inter(list1, list2):
return list(set(list1).intersection(set(list2)))
def printDetailedResults(c_text, detection_results, transcription_results, name):
print name
#detected coco-text annids
found = [x['gt_id'] for x in detection_results['true_positives']]
n_found = [x['gt_id'] for x in detection_results['false_negatives']]
fp = [x['eval_id'] for x in detection_results['false_positives']]
leg_eng_mp = c_text.getAnnIds(imgIds=[], catIds=[('legibility','legible'),('language','english'),('class','machine printed')], areaRng=[])
leg_eng_hw = c_text.getAnnIds(imgIds=[], catIds=[('legibility','legible'),('language','english'),('class','handwritten')], areaRng=[])
leg_mp = c_text.getAnnIds(imgIds=[], catIds=[('legibility','legible'),('class','machine printed')], areaRng=[])
ileg_mp = c_text.getAnnIds(imgIds=[], catIds=[('legibility','illegible'),('class','machine printed')], areaRng=[])
leg_hw = c_text.getAnnIds(imgIds=[], catIds=[('legibility','legible'),('class','handwritten')], areaRng=[])
ileg_hw = c_text.getAnnIds(imgIds=[], catIds=[('legibility','illegible'),('class','handwritten')], areaRng=[])
leg_ot = c_text.getAnnIds(imgIds=[], catIds=[('legibility','legible'),('class','others')], areaRng=[])
ileg_ot = c_text.getAnnIds(imgIds=[], catIds=[('legibility','illegible'),('class','others')], areaRng=[])
#Detection
print
print "Detection"
print "Recall"
if (len(inter(found+n_found, leg_mp)))>0:
lm = "%.2f"%(100*len(inter(found, leg_mp))*1.0/(len(inter(found+n_found, leg_mp))))
else:
lm = 0
print 'legible & machine printed: ', lm
if (len(inter(found+n_found, leg_hw)))>0:
lh = "%.2f"%(100*len(inter(found, leg_hw))*1.0/(len(inter(found+n_found, leg_hw))))
else:
lh = 0
print 'legible & handwritten: ', lh
if (len(inter(found+n_found, leg_ot)))>0:
lo = "%.2f"%(100*len(inter(found, leg_ot))*1.0/(len(inter(found+n_found, leg_ot))))
else:
lo = 0
# print 'legible & others: ', lo
if (len(inter(found+n_found, leg_mp+leg_hw)))>0:
lto = "%.2f"%(100*len(inter(found, leg_mp+leg_hw))*1.0/(len(inter(found+n_found, leg_mp+leg_hw))))
else:
lto = 0
print 'legible overall: ', lto
if (len(inter(found+n_found, ileg_mp)))>0:
ilm = "%.2f"%(100*len(inter(found, ileg_mp))*1.0/(len(inter(found+n_found, ileg_mp))))
else:
ilm = 0
print 'illegible & machine printed: ', ilm
if (len(inter(found+n_found, ileg_hw)))>0:
ilh = "%.2f"%(100*len(inter(found, ileg_hw))*1.0/(len(inter(found+n_found, ileg_hw))))
else:
ilh = 0
print 'illegible & handwritten: ', ilh
if (len(inter(found+n_found, ileg_ot)))>0:
ilo = "%.2f"%(100*len(inter(found, ileg_ot))*1.0/(len(inter(found+n_found, ileg_ot))))
else:
ilo = 0
# print 'illegible & others: ', ilo
if (len(inter(found+n_found, ileg_mp+ileg_hw)))>0:
ilto = "%.2f"%(100*len(inter(found, ileg_mp+ileg_hw))*1.0/(len(inter(found+n_found, ileg_mp+ileg_hw))))
else:
ilto = 0
print 'illegible overall: ', ilto
#total = "%.1f"%(100*len(found)*1.0/(len(found)+len(n_found)))
t_recall = 100*len(found)*1.0/(len(inter(found+n_found, leg_mp+leg_hw+ileg_mp+ileg_hw)))
total = "%.1f"%(t_recall)
print 'total recall: ', total
print "Precision"
t_precision = 100*len(found)*1.0/(len(found+fp))
precision = "%.2f"%(t_precision)
print 'total precision: ', precision
print "f-score"
f_score = "%.2f"%(2 * t_recall * t_precision / (t_recall + t_precision)) if (t_recall + t_precision)>0 else 0
print 'f-score localization: ', f_score
print
print "Transcription"
transAcc = "%.2f"%(100*transcription_results['exact']['accuracy'])
transAcc1 = "%.2f"%(100*transcription_results['distance1']['accuracy'])
print 'accuracy for exact matches: ', transAcc
print 'accuracy for matches with edit distance<=1: ', transAcc1
print
print 'End-to-end'
TP_new = len(inter(found, leg_eng_mp+leg_eng_hw)) * transcription_results['exact']['accuracy']
FP_new = len(fp) + len(inter(found, leg_eng_mp+leg_eng_hw))*(1-transcription_results['exact']['accuracy'])
FN_new = len(inter(n_found, leg_eng_mp+leg_eng_hw)) + len(inter(found, leg_eng_mp+leg_eng_hw))*(1-transcription_results['exact']['accuracy'])
t_recall_new = 100 * TP_new / (TP_new + FN_new)
t_precision_new = 100 * TP_new / (TP_new + FP_new) if (TP_new + FP_new)>0 else 0
fscore = "%.2f"%(2 * t_recall_new * t_precision_new / (t_recall_new + t_precision_new)) if (t_recall_new + t_precision_new)>0 else 0
recall_new = "%.2f"%(t_recall_new)
precision_new = "%.2f"%(t_precision_new)
print 'recall: ', recall_new,
print 'precision: ', precision_new
print 'End-to-end f-score: ', fscore
print
#print lm, ' & ', lh, ' & ', lto, ' & ', ilm, ' & ', ilh, ' & ', ilto, '&', total, ' & ', precision, ' & ', transAcc, ' & ', transAcc1, ' & ', fscore
print lm, ' & ', lh, ' & ', ilm, ' & ', ilh, '&', total, ' & ', precision, ' & ', f_score, ' & ', transAcc, ' & ', recall_new, ' & ', precision_new, ' & ', fscore
print