-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfake_data.nb
executable file
·2673 lines (2575 loc) · 128 KB
/
fake_data.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 9.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 127979, 2664]
NotebookOptionsPosition[ 124151, 2532]
NotebookOutlinePosition[ 124497, 2547]
CellTagsIndexPosition[ 124454, 2544]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{"(*",
RowBox[{
RowBox[{
RowBox[{"all", " ", "errors", " ", "are", " ", "N",
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}]}], ";", " ",
RowBox[{"data", " ", "is", " ", "real"}]}], ",", " ",
RowBox[{
"but", " ", "may", " ", "be", " ", "scaled", " ", "to", " ", "an", " ",
"order", " ", "of", " ", "magnitude", " ", "that", " ", "puts", " ",
"the", " ", "error", " ", "between", " ", "1", "%", " ", "or", " ", "10",
"%"}]}], "*)"}]], "Input",
CellChangeTimes->{{3.5939922227592835`*^9, 3.5939922315277853`*^9}, {
3.593993760601243*^9, 3.593993793361117*^9}, {3.5939938901096506`*^9,
3.5939938975590763`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{"x", ",",
RowBox[{"{",
RowBox[{"x", ",", "1", ",", "25"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.593990942131036*^9, 3.5939909905768065`*^9},
3.5939911067734528`*^9, {3.593991232834663*^9, 3.593991257560077*^9}, {
3.593993273720395*^9, 3.593993279771741*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8",
",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15",
",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",",
"22", ",", "23", ",", "24", ",", "25"}], "}"}]], "Output",
CellChangeTimes->{3.5939932964516954`*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{"(*",
RowBox[{"just", " ", "x"}], "*)"}]], "Input",
CellChangeTimes->{{3.5939913247419195`*^9, 3.593991328530136*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
RowBox[{"x", "+",
RowBox[{"RandomVariate", "[",
RowBox[{"NormalDistribution", "[",
RowBox[{"0", ",", "1"}], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "1", ",", "25"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.593991108165532*^9, 3.59399113137386*^9}, {
3.5939912215900197`*^9, 3.5939912216500235`*^9}, {3.59399327573151*^9,
3.593993283649963*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"1.7891083151166378`", ",", "0.6255303787690263`", ",",
"2.012952991375931`", ",", "5.00471666373474`", ",", "5.3327868490749895`",
",", "6.997151645068758`", ",", "8.567866704382169`", ",",
"7.610037230414971`", ",", "8.814247547594794`", ",", "9.428314812693344`",
",", "9.799784885367984`", ",", "10.100584393055291`", ",",
"11.355489358762709`", ",", "12.68089524457352`", ",",
"14.37677006290402`", ",", "14.83526573825088`", ",",
"16.780760621698803`", ",", "16.058450312323647`", ",",
"19.504826138526006`", ",", "20.061362510314137`", ",",
"21.88660724769574`", ",", "21.497101383536368`", ",",
"23.309898026731492`", ",", "26.96775143476244`", ",",
"25.156093962960057`"}], "}"}]], "Output",
CellChangeTimes->{3.593991131761882*^9, 3.5939912219850426`*^9,
3.5939933031860805`*^9, 3.5939937972243376`*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{"(*",
RowBox[{
"trajectory", " ", "of", " ", "bullet", " ", "shot", " ", "straight", " ",
"up", " ", "at", " ", "250",
RowBox[{"m", "/", "s"}], " ",
RowBox[{"(",
RowBox[{"in", " ", "hundreds", " ", "of", " ", "meters"}], ")"}], " ",
"no", " ", "air", " ", "resistance"}], "*)"}]], "Input",
CellChangeTimes->{{3.593991332636371*^9, 3.593991343348984*^9}, {
3.5939913861584325`*^9, 3.5939913891276026`*^9}, {3.5939914354122496`*^9,
3.593991442165636*^9}, {3.593993446611284*^9, 3.5939934642982955`*^9}, {
3.5939935769777403`*^9, 3.593993588825418*^9}, {3.593993911119852*^9,
3.5939939205483913`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "4.9"}], "*",
RowBox[{"x", "^", "2"}]}], "+",
RowBox[{"250", "*", "x"}]}], ")"}], "/", "100"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "25"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.593993258852545*^9, 3.5939932682200804`*^9},
3.593993309527443*^9, {3.5939933621924553`*^9, 3.5939934406409426`*^9}, {
3.5939934769600196`*^9, 3.5939934801552024`*^9}, {3.593993526747867*^9,
3.5939935670611734`*^9}, {3.5939936174290543`*^9, 3.5939936211502666`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwV0ns4lVkbBvC9G6EDckokiVTksHfY7+u4bolMRYhp1NQlh/ZGctrCoAwK
MSSVJKdBBzVyClEqilJSRIUKW42Z5vNRDlH43u+PdT3X71rrn3U/9xqPAGfv
BSwWK5w5/58aabOFuWoFlu2vvX+0PXjTskZSe7W/4BiZPcvqjc3PIPfDS4s2
CNJI+Ir02+fyCkkzJ4gvLsgjBdPxFXM5leRRSofdBP8GWazTXTNyoYk8No27
9S//LvnHSq/93ZlO0preGzTMbyecNmOxlkQR2XZHwuEj/z05KisMyg78Qtqk
eIvE9o2Svn6VDw5LxLA5zebe5Z1fiQPb138wUgreBjNSXCkWHl5fdzHaVh72
2t5jy7eK4YGbjtnR5StQ8TI69DEtiZDL0wE/RKrCTE7nhtixpdjHlvgim64O
/rfTOcU/L8MIrzi6+4kGApr/MrxhL4eBWYvap51rcXKPuNbsIQWoNJWXL51Z
B8+WyINcwXIcnv/dfnZkA+5LKDv5ua2ApkzPKvVnOuDKxpz7W6iCGpMNg9mP
dOH+xULX4ZAq9GXSPxWe0UdB7kPVqd/V4Lk7Qb7NnIPKVNPeDmd1HDrju/qT
JhfCOgvHnB1roBv7eMpmgou7rcWfk/ZqQIy4SWa+2ASfrSZ3fH7WRLLseJfo
vCEuXuHe9PNdi8PDYoqjPkZI/3Lnt8AwLYyEXhVwOMb4WBJ6RBC8DpSqf/vQ
oDEe2J4+Hxu7HpHNBdLdOTywd/YMpsVswERsgf43Gwosq2p2foQ23g2nzHUO
UUhUmrLvSNDBZNHerMCTNAL3eDZOxW1ErcHrpBtqJhj4zciLnNWFd0/W3qha
EyhkZPUkFeihWocdfcLOFJeW6US0ZOsjaWuqVckjU9wPXm2z/poBuBXe+3t2
mCFXPV/VwoWDIRe+p+i+Ge5EzbAEzzmwFiptvqJvjjXbJb5r7uZi9EBqJDvX
HFXt2slvXnLx3vLIooJ5c6Q0z3HU922CvV3hhzwPC2SE/O3r3rcJk/Cgi2st
EKWoJqPhZogLb5/vmhS3xFXtha3CfkO8ut0loedqCfFxtvL9/UZw/ef1tjeZ
lrjMKT+a+5cRzM/pVhm9sYS2R4nDrL8x5vfUOHnLEfT+eKvC9ZMxgqQ3B8RZ
EXQU/qpHQnhYuYkd+8yfQI5Vfcs0lIdvo0uOHzxMsOuXMRteGA8ivwitOcYv
FQT79SJ56DgbZakbSPDquGvayjge1tdpvogLJujjc8amTvNQsGUiXD2M4MPG
j1VlFTz0uxd3yMQQfK10Mtf4zENCtUlp8ymCpTTvmfw4DxINY0nW6QTqt1Xc
F04y73eLxO8xtnsgihue5qF0c8hQzWmCrJehT0rZFCrHbfQLzxCYTmTtMZOl
4Nha/Z1/niCKNxjuwqHQZtYcX5JHcKquebHtJgo/pJUlrMwnKLK8dpEyopAh
fLkxhfFTW+E9FZpCx+Sj3YcKCFbtFpccIBTKX3lZbigkaAjTyfTfSUFsicA2
9RLBfG3wzROHKYxRF63k/2T+K16R/EcgBbUEp/kYxnUuYwcagimMbA+zH2Es
HA2QnjxC4VeeQnZLKcHwen++9zEK1mkZ34RlTP7n+MpbTlFI3XnlRV0lQbHw
l2h2BQXlJTodn28RxDZm71pVRaFJeiTHuY7AfVmvtkk1BflEjZlyxirX3boD
6yhk9vZ5BtQTpIp+MuhvpOAmnvl96DZBuLPTQEMnhXTfNdb1dwm2c2xtoiYo
TPinrlV4SMDq6mILp5g8SF6iO+PqCO8Gv2kKo3EpydcZazTFU3tnKbzy+u5v
3Uww49qkbbqQRlQCt/hQC0FJJKS/KtCQcBzru/6YYFGL6asQIxpaI81BQ21M
fn6tGX48GjZKB8vXPmPyWLbH0ZOmsbpyIM2Lcb9bxGNncxrS1oe1RYxr/62p
526hUdPU96y3nUAgZ5z/3100nOxkRHUvCFr2Gfj4hdA4vr+Vw+li+uopqM8J
peH25wJXX8b7BQVSz8NoOAzqs4oYTwbLVxhF0Sia8/ik2E2wNnFqZjaehhjb
VHGccUzF3ZRT52gk6RZWZ71m+lDz9V3jeRq5b5W3PWWsdIfLnbhAo1MY7zXH
uLSlsMstj0aZq7H+gTcEb/sS1DSv0FAaWKi4pofpo4Rj2c1bNErUPDgnewlO
LE1aMFxPY46rZHiT8QvZRheVBhpHNt67/Z6xQNVo+mgjje7n//Ey7CPI5K7Y
bPeEhtWHGskuxuN7+zt7+miIjCRy2e8IcEB5ndR7GhElMzJajJMPOoeTARo8
8UFJO8YaQQ9Uiz7QUAxMSUth7HTiirf/CI2TUo6jMu8JLiYP1OSN0kDVYJYB
4+FTKos7PtNQs/JpdWAck51Sypti7qWc7yUzfpr/kOUzTSNxR9Xxq4yVLs05
Z3+j8SVocUczY49rVHHbLLOPaJdiEePSssCp+XkaJgGn5+cZ/w9BWFrh
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0},
Method->{},
PlotRange->{{0, 25}, {0., 31.874999974489786`}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]}]], "Output",
CellChangeTimes->{
3.5939933101764803`*^9, 3.593993362923497*^9, {3.5939933941592836`*^9,
3.593993440897957*^9}, 3.5939934804332185`*^9, {3.593993530903105*^9,
3.5939936219173107`*^9}, 3.5939938005855303`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "4.9"}], "*",
RowBox[{"x", "^", "2"}]}], "+",
RowBox[{"250", "*", "x"}]}], ")"}], "/", "100"}], "+",
RowBox[{"RandomVariate", "[",
RowBox[{"NormalDistribution", "[",
RowBox[{"0", ",", "1"}], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "1", ",", "25"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.593991399157176*^9, 3.5939914235575714`*^9},
3.5939935998420477`*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"2.635059591941196`", ",", "5.051415955571876`", ",", "7.58813637607227`",
",", "8.368666818852493`", ",", "9.89024909209137`", ",",
"12.674190611845187`", ",", "14.96078788415249`", ",",
"17.150440616465918`", ",", "18.249985871248654`", ",",
"19.60374416524068`", ",", "21.95655990428961`", ",",
"22.766748016459772`", ",", "24.143166969558685`", ",",
"24.436979150014515`", ",", "25.91852289075169`", ",",
"26.099532019069898`", ",", "27.685028434374892`", ",",
"28.17381873101912`", ",", "28.852193511841755`", ",",
"30.87737709297303`", ",", "29.659192161928623`", ",",
"30.85457388734584`", ",", "30.683231100612936`", ",",
"32.28160751573607`", ",", "31.93035301521347`"}], "}"}]], "Output",
CellChangeTimes->{{3.5939914239325933`*^9, 3.593991445068802*^9}, {
3.593993601042117*^9, 3.593993628674697*^9}, 3.5939938048937764`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[",
RowBox[{"{",
RowBox[{
"2.635059591941196`", ",", "5.051415955571876`", ",", "7.58813637607227`",
",", "8.368666818852493`", ",", "9.89024909209137`", ",",
"12.674190611845187`", ",", "14.96078788415249`", ",",
"17.150440616465918`", ",", "18.249985871248654`", ",",
"19.60374416524068`", ",", "21.95655990428961`", ",",
"22.766748016459772`", ",", "24.143166969558685`", ",",
"24.436979150014515`", ",", "25.91852289075169`", ",",
"26.099532019069898`", ",", "27.685028434374892`", ",",
"28.17381873101912`", ",", "28.852193511841755`", ",",
"30.87737709297303`", ",", "29.659192161928623`", ",",
"30.85457388734584`", ",", "30.683231100612936`", ",",
"32.28160751573607`", ",", "31.93035301521347`"}], "}"}], "]"}]], "Input",
CellChangeTimes->{{3.5939976635114765`*^9, 3.5939976653415813`*^9}}],
Cell[BoxData[
GraphicsBox[{{},
{RGBColor[0.24720000000000014`, 0.24, 0.6], PointBox[CompressedData["
1:eJxTTMoPSmViYGCQBGIQDQEf7M0NJsvPEmF1gAo4/NgYl7TMRATK53D47yqc
4xAlB+ULODDpb3l6cI8ClC/i8GvZ/F3njitD+RIOaV5czfqRmlC+jMPb5TuT
37zWhfIVHAS3bXdrVjOE8pUc5lR+FfpvbwTlqzhw33H51TfLGMpXc9g5TVHm
4RdTKF/DYct3sZmeR8ygfC0HK3md6ctULKB8HYdFEdPu3s2H8fUcXqR/CFB5
bQnlGzgknNd7VyVpBeUbOiRVMLHFrbeG8o0cTmukJtXr2ED5xg5ulvOjNG/B
+CYO6lMYTs5+YAflmzoEOXtePLDCFso3c6jV2hR19BZM3txBbt8B6xfrYHwL
hzIj/u3cKg5QvqXDGuG6udrv7B0A+xFhaw==
"]]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0},
Method->{},
PlotRange->{{0, 25.}, {0, 32.28160751573607}},
PlotRangeClipping->True,
PlotRangePadding->{{0.5, 0.5}, {0.6456321503147214,
0.6456321503147214}}]], "Output",
CellChangeTimes->{3.5939976656706*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "4.9"}], "*",
RowBox[{"x", "^", "2"}]}], "+",
RowBox[{"250", "*", "x"}]}], ")"}], "/", "100"}], "+",
RowBox[{"RandomVariate", "[",
RowBox[{"NormalDistribution", "[",
RowBox[{"0", ",", "1"}], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "1", ",", "50"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.5943903250448866`*^9, 3.594390330068095*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"2.8083529098112407`", ",", "5.360417032205909`", ",", "8.416235422149732`",
",", "9.914289992575446`", ",", "12.0927447376725`", ",",
"13.68509474552405`", ",", "14.596815530583378`", ",",
"12.84276239409478`", ",", "19.59974047163093`", ",", "19.57013317153845`",
",", "20.5786748199416`", ",", "22.19034582454556`", ",",
"23.551046810913068`", ",", "23.911123457401`", ",", "25.842580060547764`",
",", "25.525051082046097`", ",", "26.80113748804807`", ",",
"28.70633983195526`", ",", "28.19803621645759`", ",",
"30.903518295396555`", ",", "31.105010293256356`", ",",
"29.89124668020534`", ",", "31.85765884238815`", ",",
"30.515290659942437`", ",", "31.665773426598225`", ",",
"31.818036544606606`", ",", "33.40638909623992`", ",",
"31.085509014385206`", ",", "30.936661838434862`", ",",
"32.774010610772955`", ",", "30.162882661646055`", ",",
"29.255686695148057`", ",", "29.28164380648313`", ",",
"27.784180676731808`", ",", "28.00598706521938`", ",",
"26.905451554081793`", ",", "23.374199983312497`", ",",
"24.905802684343502`", ",", "24.224943446047625`", ",",
"24.188417418868447`", ",", "20.38516328403662`", ",",
"17.267956746067426`", ",", "16.866680626785932`", ",",
"13.086931052456125`", ",", "11.581939683452802`", ",",
"10.563175504566303`", ",", "10.776635587352793`", ",",
"5.943642666806181`", ",", "4.096981419600855`", ",",
"2.9989145070886236`"}], "}"}]], "Output",
CellChangeTimes->{{3.5943903259340878`*^9, 3.594390330348896*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[",
RowBox[{"{",
RowBox[{
"2.8083529098112407`", ",", "5.360417032205909`", ",",
"8.416235422149732`", ",", "9.914289992575446`", ",", "12.0927447376725`",
",", "13.68509474552405`", ",", "14.596815530583378`", ",",
"12.84276239409478`", ",", "19.59974047163093`", ",",
"19.57013317153845`", ",", "20.5786748199416`", ",", "22.19034582454556`",
",", "23.551046810913068`", ",", "23.911123457401`", ",",
"25.842580060547764`", ",", "25.525051082046097`", ",",
"26.80113748804807`", ",", "28.70633983195526`", ",",
"28.19803621645759`", ",", "30.903518295396555`", ",",
"31.105010293256356`", ",", "29.89124668020534`", ",",
"31.85765884238815`", ",", "30.515290659942437`", ",",
"31.665773426598225`", ",", "31.818036544606606`", ",",
"33.40638909623992`", ",", "31.085509014385206`", ",",
"30.936661838434862`", ",", "32.774010610772955`", ",",
"30.162882661646055`", ",", "29.255686695148057`", ",",
"29.28164380648313`", ",", "27.784180676731808`", ",",
"28.00598706521938`", ",", "26.905451554081793`", ",",
"23.374199983312497`", ",", "24.905802684343502`", ",",
"24.224943446047625`", ",", "24.188417418868447`", ",",
"20.38516328403662`", ",", "17.267956746067426`", ",",
"16.866680626785932`", ",", "13.086931052456125`", ",",
"11.581939683452802`", ",", "10.563175504566303`", ",",
"10.776635587352793`", ",", "5.943642666806181`", ",",
"4.096981419600855`", ",", "2.9989145070886236`"}], "}"}], "]"}]], "Input",
CellChangeTimes->{{3.5943903399741125`*^9, 3.5943903475713263`*^9}}],
Cell[BoxData[
GraphicsBox[{{},
{RGBColor[0.24720000000000014`, 0.24, 0.6], PointBox[CompressedData["
1:eJw10W1IU1Ecx/GZWhY9bDIfspWrmdt0rrn5tDndb266LQZJQlnBRlsW+WYZ
gwgyZkGtQGuQtsw30QtDnAMbBFLWC7GJuVIKoVDLjS0LepRiSY/0Pxcul8/9
nnM595ztDtfellUcDkf59/73/H990imEP0Y6Tq0GvcCdFb+U15ZFzsCYqPip
4IWQzMXCfsf01uciMh/xQ7+0Z3ZJyLmYt294MGYrJgvgVokivtISshB5C22d
Z4NS8g5kjrque2+oyAXYl2/TLfuYC5EcOJlRcK2MLIH7YGrHiKKCXIQpl/0Y
r7OSLMOCeL1Tt8Qsx+nGwaa7s2qyAhu3tT48foG5FIKxoeacKQ1ZCbHgQ3Am
pCWrEN1y2DOsZC7DHLc3aU3UksvhNdmX3+TpyBXwFnJHJbEaciUC8v6LV16x
XgW+M5T97jybr0b6RLfwxADrGgykRWZbp5mr0ROf6UoLgayFylr2PprFeg1K
2ld4Ex/Z92rhSu19nOlk43X4/NIfGJayDrwdWhpy62l9HsD6PRnZbGbr1eP1
PT/3Ubiauh7fGi02bwr7/zqEY9bByQTtl6cOgfYvvkk7228DWhYtwcVEFXUD
bOpwrFtN5hhxdO39fK2CdSP6u/o29TrY+dZDklf+zG8spV6Ppnx+eH5OQb0B
t/qyNedkRdQbYD5w6fdXqZi6Cd51ssvNwp3UTeDLU+S3O8kcM54UHzHsHs+h
boY7PZ67x8mlbkHP1ZvR8Z9r8AcRp8iN
"]]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0},
Method->{},
PlotRange->{{0, 50.}, {0, 33.40638909623992}},
PlotRangeClipping->True,
PlotRangePadding->{{1., 1.}, {0.6681277819247984,
0.6681277819247984}}]], "Output",
CellChangeTimes->{3.594390348678928*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{"(*",
RowBox[{
RowBox[{"damped", " ", "harmonic", " ", "oscillator"}], ";", " ",
RowBox[{"beta", " ", "=", " ",
RowBox[{
RowBox[{"friction", "/", "2"}], "m"}]}], ";"}], " ", "*)"}]], "Input",
CellChangeTimes->{{3.5939916164336033`*^9, 3.593991622455948*^9}, {
3.5939924337493515`*^9, 3.593992444778982*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"x0", "=", "10"}], ";",
RowBox[{"v0", "=", "20"}], ";",
RowBox[{"beta", "=",
RowBox[{"1", "/", "10"}]}], ";",
RowBox[{"omega", "=", "1"}], ";"}]], "Input",
CellChangeTimes->{{3.59399175903376*^9, 3.5939918212383175`*^9}, {
3.593991900059826*^9, 3.593991922196092*^9}, {3.593992027306104*^9,
3.593992065246274*^9}, {3.5939921873262568`*^9, 3.5939921935846148`*^9}, {
3.593992650575753*^9, 3.59399270175568*^9}, {3.5939927547117095`*^9,
3.5939927636122184`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"E", "^",
RowBox[{"(",
RowBox[{
RowBox[{"-", "beta"}], "*", "t"}], ")"}]}], "*",
RowBox[{"(",
RowBox[{
RowBox[{"x0", "*",
RowBox[{"Cos", "[",
RowBox[{"omega", "*", "t"}], "]"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"beta", "*", "x0"}], "+", "v0"}], ")"}], "/", "omega"}], " ",
"*",
RowBox[{"Sin", "[",
RowBox[{"omega", "*", "t"}], "]"}]}]}], ")"}]}]], "Input"],
Cell[BoxData[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "t"}], "/", "10"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"10", " ",
RowBox[{"Cos", "[", "t", "]"}]}], "+",
RowBox[{"21", " ",
RowBox[{"Sin", "[", "t", "]"}]}]}], ")"}]}]], "Output",
CellChangeTimes->{
3.593992114406086*^9, 3.5939921965847864`*^9, {3.593992653938946*^9,
3.593992703472779*^9}, {3.5939927556597633`*^9, 3.5939927650423*^9},
3.5939928317531157`*^9, 3.5939936339980016`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"E", "^",
RowBox[{"(",
RowBox[{
RowBox[{"-", "beta"}], "*", "t"}], ")"}]}], "*",
RowBox[{"(",
RowBox[{
RowBox[{"x0", "*",
RowBox[{"Cos", "[",
RowBox[{"omega", "*", "t"}], "]"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"beta", "*", "x0"}], "+", "v0"}], ")"}], "/", "omega"}],
" ", "*",
RowBox[{"Sin", "[",
RowBox[{"omega", "*", "t"}], "]"}]}]}], ")"}]}], ",",
RowBox[{"{",
RowBox[{"t", ",", "1", ",", "25"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "25"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "25"}], ",", "25"}], "}"}]}], "}"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.593991795939871*^9, 3.5939918132468605`*^9}, {
3.593991848704889*^9, 3.5939918893852158`*^9}, {3.593991934029769*^9,
3.5939919641274905`*^9}, {3.5939922052192802`*^9, 3.5939922073884044`*^9}, {
3.5939927713186593`*^9, 3.593992774110819*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwVV3k8lN8XZuz7jH03mLENY5hh7HOSJKINRVFJsiWVSlIREUqyf5GSpCSR
yJa5SaUIJSrKloRkzx6/9/fXfJ553/ec5zz3ueeeq+p1bOdhHAcHBzc3B8f/
f39Hh0VxcEyx5HX5ut73M8BbU6tNQ3mK9Vfu9OOqAQb0vu2Ud7SYYo2zvfbu
GWTA7sAon5PuU6yLef2zxRhuFzV48l8ohs/xplZieEtZ7z92+hRrd+Sf3acw
3LDr6pbhp1Ms4YzSfaNYPPN50zThjinWt9gAJI7hp5m/+g2np1j/mZrdme5j
gJ55mq6b2DTr1TemWkwvA+59tw69qDfNcpW7cLD9GwNUIqZeFjhMs2xMSJfa
uxmQqZYr1uI3zerZYlUY84UBhFcOe2dip1mf7b7NzXQyIP7I0j3Ze9OszWYC
SVIdDOASLJyxapxmbbB/lzvRxoDwYmerw4PTrOCfSnYXWhjw1wkXn8AxwzrX
tlze2MSAoOnHnWXKM6wNxtuEGhoZcMBY6Oia+wzr7J1h0mAtA75+qaoinZ1h
Pcn8aMnzjAE7z/lwO2TMsGTWLk/2lTHABr3IzuiYYRXE8XfW3WPAc69jv55P
z7DeH5M6wr7NAGMeJfqQ2CzrteUhp7AsBmjZh76jbZ1l2btG/5C7xgCRT9Sl
t42zLCve0Xc8xxgQc/qbzdTgLGsRH57f7sMADrn4JGnOOVb/TNVpF08GzHj8
1DxkOccSGFGdvraVAV2/sl1XK+ZYQ57S+YjMgG3xW+6ofZpjqTgKVx1UYECT
7sIfu5k5Vv2O+Hv1eAbUHN95OY36l+WUo4h/tEyH3BX+p9TCv6ywDNh0qJkO
MrmV686v/rLaZ4W3j9XTIQm8Hc79+MvKEfK0139Ch0uX2YNvVOZZh5IPaM1l
0MFH7DThYOY8SyGaePL4ATroq/8ISolbYIUeu6od/tMQSsKMZ62LFljx3/bd
vNVhCNSPcWdm3i2wxJJvE869MATdSFrEDuFFVoJETf7eHEPQ6Tt/Q+z6Iou3
5BWrzckQSNmyTxNSl1i/WzilBu8ZQP5MgIl5xRJLZKjasTrJANTs2XVjnUus
9/HLGdvCDEB16fCrLTLLrBrT65tqtxqA8u7yLr6sZVa5U2BIzgQNZCWclqJu
rbBUNGnOcxo0yPDPO09HKyxf5m2NBWEaSDfMcf7oX2E94e9aiPypD1LHswWt
1VZZtZs7ru4+pw/ibSMKHAWrrCfR3Fu/5lFBOCHKKrzoH8us87u5Vo8ucHBV
R4VUrLPGGY0yz3m1YfouO3apY50VKzRsM/ROCwZtXydcmFlnSRxQN3mTqAVe
r0a3NMpwwKpE/NZGKS2wEVjY0erMAW9Ve5wqiZogcIPgNdjKAaKyX+OcKWRI
vm17SfAlJ+xq1i84Iq8Kd9mlDe4PueDTj7EvXjQC/PfmQP72Gi5Y0pmLmr6P
h8Q2fLTtWy7o3FnEEaqKh9C+4E2Gv7igerpi+BdJFBzWaU0C6twgc8/8WNWI
AMxYlb2vyuIGH+1ud5WTnAD1ZV+k43ng2/WLB/gzK1hGrw9WC//HAxdSPmvi
NhSydVoJWbj7PPD12vwlc5/XbMne43snXvHAulPOe1N2D/vXP4PeV5y8cEHu
d1SI6wQ70fLJj5CzvBARVjgaeXyd3VP3ZOKjLx9M95tJhsSIoZ23KgJEzvLB
UcqO2QU7PHoXWTWyOY4PRu3iuSxa8ajGtn6w7gEfpH55XOv0mYCy2t923Rvj
AwOzGQXfHxLIfai/PiyQH/I2rlajARnULSR2XS1YABbqX4/t9VdBOycIwh4R
AvAkLETb7rsKetcuGZeRJABRrPR6pElENWnyUcJlAtBMW7s+lklEWSoaZ+an
BaCX/Pb22GlV5E633P/upCCk5JZT54nq6Kt7gP6JM0Jw+KCMaoCWBoof3ByY
ESMEV7/kXnDZqYHM/EkP6tKEoJP364a+cxoo5+x3Nb6nQnA0VonR9l4DHcjc
Jp0zJQRcu92rJY9qol+d9H+v/ISheO7weHemFsr0wJv9DhUGxa3mz+PqtJDd
z/HT+CvC8EDVLOVDnxYqmiuYcr8nDNsbiv7okLVRkITs0OSgMFxt2S66UqSN
/m5ffSe3TwRiJIZbm+/ooHtfvvCxAkRAlREzOMTWQa4HKmy8w0SABhO05G86
qOpYUH1JpggM+/RH3ZekoPDE/rKNnSLw3eDG5ecXKUhP+vmE75AIvOLx+nX8
PwrqvfkfJXFWBIx1K6urnlAQPNpZ8IUgCq7dOaOrPyiIq6Ux86iTKKi17Tjs
vkEXPd2V15nsIQqBCi3Um7t1kXfPefGqQFEg/T7Be/yoLno9ZnwVlyAKHHnL
js0Zuihe4MHFjDei8O3dh0zbX7rI/MblurouUTgTRVUXXdZF47JeSwM/ReHH
aecXh4X1kJOWwkldbjHYXpPR3aivhwibr/m8ADFg1DfbwnE9ZPOgjkXZIQY3
hkuONEXqoVChcdm0g2Kg2Onm23JDD/W32Tf7XhKDj/+969hcqockDcPufkwW
g7KL57TZ9XrILvXBeYt8Mfja0cR40qKHSvfw0/CNYjB8391d6JceGqphCoR9
EoOIqwbHj8/qIVmlI4M/hsRAa+iN8a51PYSmvN714PAwunK+L06Kirrzlivx
QnhQD61t71WhormdyfmbJPBw5uv01cfaVKRV8SL8sToeVn0uZjWaU5G1j5vf
EAUPLsz9QgI2VLRPZtpFjoGHY79sY946UNHppivWThZ4aFQ9ROTdRUVJZ4n6
UTZ4iFPkn653o6IinSqFqq14uOxcSpjbT0WNPdv4/zhj+VkrNwsOU1Hv1V9z
qh54kJx7WN7hT0WLlhcHXA/jYUtr4YkLx6hIfFK6NeEoHq5x/10tOElFurdL
atApPMSYVp+2P0NFtjtsC/+ex8N+LhPewDAqOoDrTdGJwYNgwIcOwfNUFFZ+
KmJ/Ih4UD3EIal6kolRvkaOp6Xg4aezWiSKoqESqwO1tLh4CJmK9v0RSUdNr
C9u1e3gQLnMaOXqJigbPfDKkP8ZDv3R0SiSGV7UCVXyf4eF2KCFbAsPS3VzC
N9l4mGBMG5Gw72kJ2Ysf3mB6/NG9WY7ls7eg/+Rtx4NEfY9QA8bH+8+7D+Zf
8GB4hMjedo6KLuR61Qf34yH+tOb8vlAqyty2XFQwggfmIfLMaAgVPeFIzuie
wsOffOf5+WAqainTjhZbwsNk3ezm6EAqGvZ6EWzDSYD9thupyUeoiEPSzeOs
AAHqx6JmiF5UJP9qaksJgQAfPeb6aPuoiHH6ivEPOQJ0ObRtbHChIt8vz8Qc
dQhwNT7xkf9mKroUt2010pAA/iIvdl9iUVGO2a+RSjMC+MnNI0UmFbXnSDcQ
HQjA+yGY2kOiojHHkhKXXQSoVk0cXpenIu71Tdnxewnw9umeV/fxVGRy8FTI
XAABuocenbyyrId2iosc1A4hwNTV7bxoQg8Fvrzr6BlOgHMvmzedH9RDt8mf
NJquEiDIWdEnvkkP8Y8Zfs1+RIDdb4PalhOx5/PEU0UVBECzkVIVF/WQCZcY
ofo5AVZwelWrx/SQr+Jvu673BPAy4mgz2qaH3jrlV+EnCPA8IB3t5ddDXntv
OKvMEyBP77HHtb+6aPnIxSm9NQLskDFd2jaoi3Qi92o5iIrDvcciCvE1WD8o
l8i8TBUHP7b1n77DukgNcTJSjcXBTNXGtXCbLqppmWy7YyUOblHDjVymumjs
ZzMfchKHsgdpHecFdZGDbPSZ5SBx0OSU/XP5PgUJn59zPfZYHBp47SK8P+ig
u3GDM+efiYPnfZBkP9VBFuntiVfZ4mDvdKrrWYYOCnxc/PpBmzgcefRhf8w+
HfR+wNt4aFIcYmnRGg8GtFGibaeUG00CluQd89O7tRABX/nJukwC3sWtaXxJ
0EC2k0ntr6skIDjSR27CRwOFtQa02CMJsPq8W6ZhgwYauqrauLNNAor27H54
b56MKgWulXv9kYD1q03XT3qQkTuXd/IlbUkQ9SqwfqBCQnfnCdsb8iRhqEfa
X/CcKmJ+P9q8IVkKuFSeWt3zkUFoOWLrp2wZaO/PsSpUH2N9lDsxfyxfBlY9
M86O6P5h/TQ5dFvooQw8Tq/87iA/xRI8s2nOukYGfnuRIEFlluUyK5BT9kUG
uC4cMK9WWWKN/U7+nSglC0tU04O6Z3Eg+f1u/JbrshA/scTN2ScCGqtpjJ/p
siD8Q40wdF0UTBVieyNyZaG78bC9JNaHPd38DKseycKjYuMC7W14eNCp163R
Igum9tOVvA8IYNVaqc0tIAen54/ct8W+OMJuaqq/JAe4UWvSQ3M5WDTFqzHi
5cDBNPtawGU5uPJ097kHN+SAu2jyT2WrHBQ9GNZLvY3930Nj/d4vDxMp3Cl+
9XLgfev3hvJwBQjxBQ/JZTnoJwdr4G8pAc+P2Mo4TnmQqnmvRRxQgnSPNrF1
fnk474+elqgpw7Odng2jMvLg3WuXanNXGZYtwjXZRvLwTdscM60KRBCqpv2O
y0Pm1WPDU4gIhKvr9n2h8iAZ5P6t8TsR7vBuvuscIQ/bFwJ/7lwmwsuVTlfW
dXkwvnBVIMdQFXiHZ2slH8kD9/H9L7pvqcLVGv0Y9og8mMUmP2sNVAMlozN9
jCl50IgpDlO/rAYlj+tNihbkIX7ajUa9qQZtdx1/p/IqAE7g7A3vFjUQvx6w
3Z+kAOvfG822aapD5qFCeakDCuDPPGE/1aoO/g6yDbq+CpAZeEuXPqQOFvQ4
P5tgBajExW5VWFKHAVxA1ckIBRjU84/oViWBzh2q68fbChDG8HgodowEq3G3
/o3ex3Q09Dt0JpIEbcfxBZxlCrDxj8HCpRQShGyYmaW9UIDgVi/ly5UkeN5f
ceP6gAIo3mitMlgkQVKThmnhqAJUh5268ZSPDF6lGf310wpgqj1s2y1NBt6I
s/oTnIrw+7bgsAiDDF+OjHXxCCrCMb5rdxSsyfBw294LSuKKUDdyaqB5Gxm2
q1i+36qmCPl+wjcl/MmgxlcS4q2jCIqhPYtFp8kwN6GsGG6oCPu0dqUNXSLD
f/UcAQ+tFYHs7r3fKosMgx6N/IKHFOFo9CgzoZEMTzcZlaoGKMLlLOlEeisZ
YvTu7TY9iT0PXh87/5kMlH+x93yjFGFWHle9OEKGtaFFx4gERZj7N6SnPU2G
9ha/vxkpiqAfIlm2skiGkBwHmzf5inD/W9xyDJ8G2EbX/e59qAisnIftLFEN
kAvUS5kvV4RafPunLEkNGN+VayZapwibDQvEM+U1oN5cbJDcqAj4zN0ZTKIG
JKlHxFm2KIJe4Y3jZ8ka4CU0TXP5hMWvDSvz0NEAxuzBL4HfFKHBodJ3iKoB
fD0fL0YPKUIAz6EiEboGdDds1MwZx/j+lEv4aqwBxUVPW8vnFIFn6x+inZkG
XEgmn25eVYRJLt8oN0sN2B6WrvSDWwmUna42Y7sb1Lz4Xi0LKwGx/6PEYWsN
+LslNFBcSgk+92mH7rfRgCaDUQkdJSUgf52V+rdJA7Lk3Gs3kJVg/hGvsNVm
DQjkbPZy01OC1oiiMDU7DbAaNRc8bqQExf9lRhVhGP+huOyKpRIkb1re0oXh
H1VKbrc3KcGx0iMzBRiuvJ3IUeWoBKXVw3fkMHzlynphm4sSOL4cvWSAxXcP
Dt72y0MJLp5zqv2D5dfdMzC/dlgJJPL2nXbC+GWLs9YSjipBYdDT3FCMv+D7
HB65U0rg0DjjtwurLzR2WfheuBJwNLP/9WL1/9qwR5IerQS6Hh8jFMw1ALts
K6AEJbCRmpQXMNGAxkoJdccU7H23X3OFDA24Q2kzOHJHCX5ZjuGXdTWAMKxr
OvdACeY+tz54pKUBEbfjIbJMCeQngCZB0gAPKdtt2UgJ5FJ66+fkNKClLd9V
q0kJTsaraRzH/GAWz+lZ0aYEfOVqprcxv8iu1wW29SrBuxPPKDI4DYitlg/Z
N6wET0iRJ/avkGH+ZOi50T9KcJTvGH3vHBk6RujxXP+UYLMb8d/Rn2Swzr9x
I4lbGZZMxE9d/k6GUo/JTCVhZbjRc2nTjk4yJH4sKmQqKMO/LIGvvNh++HeV
/3Ej1gcPXlOTmK4hQ+Bmn8odOsrAG/M8JamMDFvqVF8FmCrDzWnpg1M3ycB9
L3Pw1m5lsD/zTc/sJBlOHpgf1d2vDJICb9M7j2D7Td55utpHGTb7c27X2kcG
9nUxjk+nlIEn8PfbuY1kCDsbo8SfqgyT2qXFBngyjNKHSGnZyjBrcdXrOo4M
eyY26KrlK0NUp+eje3MkMDr0z8ziiTI0VagZcX0hwdTWkD3B7crw5IDD3fBs
Euzn+7j/32dlyCv5mPw4gQStL/SPxPcpw1l5UkruORI8NP596u6EMmxczJF5
4k4CH6JXyhdhFRjn14iqkiLB99ltrbBFBconTYhJF9UhUeGzevAOFXBRX6ta
81MHq42eZ2+5qYDVzQ55krM65CYHktb8VKDL86N6GtZ/DxjEhdXGq8Bdwa5R
pWY1GAxq0DBuUYEpDl4fMx41mAvJYqdpEuHMDc/4bVuI0MLv6f+IQgTPH/X2
6djv3RxVqVf6RFCd7Oy9K0IE58b7/nNMIiSs3S5j3lGBColnUrvsiCBiOavP
9VAZTj/pCMD7EeHZE6cJ7weKsDQpLJtQRITUsCuEmYOykFR2Lut6CRHcGwSf
KCrKgtbJMcXUJ0SQQG8onF0y4Dr/RvVmDRGay82TV+1koHz1EuXxO+zcMnid
20eRhqMCS1YdY0Tw4fnEFzgsAQNqPw8rUFShdYYQUBMkCm9dnpc/fKgKYpoP
DlhazLNKItSG/R+rgq9H47k1+b+s1IexsjrlqmC1y4Y4sDTL8uTcef5+jSrg
wx9+kK+aZs0VD9sWvFWFyeHq6eyjYywiN74795cqRFbKPQ7BfWCFPvHiSFZX
g0hGTOyj+jG25/c3hjs01WBbzsSHT6Pj7I38eofxFDUo9iF2vZKYZIt6LrxN
NFQDzV/HlebKptl3Ba6mJGxQg7iPGVr05b/s9gMVGpf3q0E4PiVKzHeNrSnG
7xiarQbldtu1qrbzoZKpyHtXbqmB9bTpecmvfIjxcWU9M18NRJ7yS3Ud4EeQ
Nvmk+qEaqG3wNooMEkBuCp9lV2rVQFfthOiGS0IoQfPe0PlvanBUIof0Ik4M
iQsQrRL71YB1Obb2NRceZY79l5E7pAaTVcW3tlvj0d1H1+zZ42pgH0tW3lqP
R8/pp0o5/qnBjq2SXO/KCGiSZRMepaQO5r8+6WvFSKDTqvWdKarq4DexlvOz
XgKt4kz075LVQfLZ7WrTBQnE/5oy2KinDhllSVz5PpJIdauEHa+VOrj6We47
DFJo155BiThPdRBevb0k1CeNngVHPEy8pQ7SrfrFPo1y6Grt1FO3fHUIL0rY
P/BbDh3gPVhPKlSHRrUHuElxecSfs+FDTYk6RN1QvfJivzxyf4NbGH6uDt9r
LNdN5uTRmtJla9Y3dbgprV2pxq+IPvr+dRDsV4eLPupieVqKqLD8sEvnD3W4
3RTTW2yniLZvsfUN+K0Or9rT6wNiFdGdEL7EjGV1OOWWsHBhXRHZNsd9nZQl
waOMF7cbvyoheenlwRpFEjQq0jlWZ5TQ5AH/8ctEEkitWss+F1JGmfP26wpa
JAio+MbuMVdGY6rCZDsmCQSfyAXFpCuj+sBwqoQ5CQarvPn4ipVRyrNxZq8V
CSB/UhX/QhlZOL63D7Elwa5iswO1o8ooMTQx+LYLCfQ8PAVOGqkgr5drZwPc
sHgalPuMzSqIKXosytiDBIpP9nNc2KOC+vO3pbd4kyDmsHhW4VkV9HSCfSvD
l4TNrUfrY+NUUJwp7YFXIAkm9McOTmaqIMM2fN3iSRLMUnHrzpUqiFc+8tXL
MyR4lWs/urNRBfV4T7cmYn3r0qow48sHFRS9/GGAFEWCog0b+0J/q6A9m6x/
T8aQQPqomlXqggrSTXoyVxNPgmeHtM5ncxJRJzmFb0cyCV5wER3jhInIXlPW
5Gg6CU4rlHvjxYkIad30jcsigYf5m6rtMkRkpKP2X0EuCTIvCm63VySiIkrh
2xd3sL7Z4GL4j0hEKnq6y9/vYfpwFvv6kYkolVqms1xEgvvVpv8StYnookFt
gmE5lp929hivARHNGUKd0zMS2MU5HtnDICJ/xqtx/1psjtS9OX2ISUR9RvZK
sWwS/BJzV9Y2IyJnZptj/ksSREdmrxVaENFbE+cL7DckyPO7ebffioiszL6W
9DSTwCuKrd4BRPTU3LNvoY0ED5Kjky5aE5G25Q8xyU8kUEm7wTG8kYhyrXyB
hp0T7yaK43k3EZEk/Ane+o0E6snPbQcwHLfhRJ5vP6an+jvH07ZEtGa98CF6
iARqcovVrzB80iYclzdCgt2f4u+1YXhkEyf9+TgJjlcP6qdi2HNzzKGvUyTg
2xB+UgLDHXZCqX+xc6qBZ/K6Ixbfzj6pkbCE+ff9+F1rGyKqd5D6q/ePBFuu
Q8cMxpfumEW258TO1RPvLTw3ENF9JxVXHx4y4FuucV9mEZHS9rsxlwTIsCKT
7HTEkoiSd2g/yxXBzuXf6ywecyLi31Xyq4aAnes/8eueJkR03pku+1mKDI+y
CeUhRkQ041JlNytHhriLB6JtDYnId7flWTFlMog1BuZ8ohLR9z0NDyhqZCBZ
VJBVKES0031z92YN7LnxGwcNTSJ6s7dF0FsHm3N3WpqPqRGRhccO8wgqGQ64
1asGKBOR5oG9OVXGZCjvLLt+V5KIcg72t3wyI8Ph9/lnPMSISPzQ4X9TVmSo
sLwp80mAiFYPH/PU3kwGpfMDGfMrKuhDQBQxazcZJE3ePQh6rYJsj/LvqNxL
hpvtu+LePFNBdUHXIj/ux+YU0XCrW/dV0L3jGYOCvmQoe07Hvb+igs6deXj3
XCgZxit6N+tvVEFTobTOjHBs7nmuoXKVpoJ8wip4nkaQIe3RrscBSipo+3m2
z/gVMrz/KYuv+KuMyFEdWh7/YXOLM7Xj4m1l5P6Ey8AHm2vQk+87AuKx/T9A
Nz2WR4ajYUqswZPKaJ6VuiXyARn4Vu3SQjYpo6ZVZ/+Camzu33qux+yHEvI/
3fXwz1cyLB4QONQuoIRyC3ifzmNz1/bD1rXPxhVRxyfjuvUBMrxmDC3R2xSR
BT2jhTBGhiivjOd/khWRyNTuP0bLZFjWLagIlVJEpX5fqRewe4FZ0p/yKD4F
NJQpwIxVxuZGWkO2wJA8km0yZSWpaYCf2/Pd+kgeRWpkbbuD3Qseuj4y8jgj
j3b+cA9+jc35tyYqabsH5NDffd/KRPdic3SyjeXRu7LIbHsf41a2BpQrvPiR
Py6F6kZ4/njd0gDTjE12tS+kECtSt0AjXwO8PSx40tKlkM2Ts1IlRRogqsO7
LZklhZwkJefrqjXgRpJu6ZtESXToi92z7s8aMJcaP1SrJoGuHnhiKi2pCfoM
D1InGY96gy9bXbuqCZ8XJxuuRnMhToSU7iRpwtpkXXikOBciia2uVqZqQtQL
3iTn2zgU8OhEbX+OJvi7Gp+9WcuJFkf3mzAeacLuzO6I/oF1tsQhM8Oe95rw
3al0x/XSRbadyyRZW0wLTIVeuVvmDLHLTd1EXt3QAmalGptUOM0izcTnpKZp
gWIHOd41eIaVXlRH8f5PC1KO+WgtmsyywhSI9lx5WlD3shMimuZY8G84ZkOp
FiSGyG5w719gtaAQjvpWLRDauUVzduof6+fmpNlKIW3weHLdVa+BG1w5Gi7F
iGkDKUu1b7sCDzRVzRJcJbSh7SEfkSeEB4q1d9P+ymuDm+QmLwUSL5wQUj5K
19GG04aCF/sv8MFa68Phx3baIH5xNK9fSRBkXN98vX9ZG8hbLT+9WhYFO4u7
cDhOG4xC54bSrcUgVC2yUPWaNnjuXBHrixOD7gmzU1mp2jAwXtvsK4SHnNgS
/NV8beD8YC4slYYHteq0zcdeaMO9TxyvcNkE2HnrRAnllTaE01ZKztQQIOry
NqmRJm1Q2tgVcOcrAYZ2CPw40K4N2w3EZGRlxKFwLPzCzj5tuDL5J/Jcojjo
KnpXGP3Thoau+uH+IAnYh9ugOMOhA1q21sLX4yTg2ohSVAm3DmRLOAZN5EvA
xNPP2zWFdSCYsuk3+7MElDk6jMsq6IBwzZJqobkkDNK1dnUq68CZTZXhX3ZJ
grg8T80NNR0wLdhlWh0gCSHD9bGCOjpAZ/pxXsmSBOOLhuqrJjowu9eW5jIn
CT6HxeKrLHSAS25tbkVACjIcxqdCAMv/XfDadhUpWJS5V/9nsw5YUFJicFuk
oLZUzr3PVQf4gi+LXs6UAhjkuNEQogM77zzu/qEpja3DjHJ7qA5YL5+YqTSV
hh8KQ8Xfw3VgrRJfqeEgDTEub5oWo3XAs86joSdQGpqbrnHop+mAY9/LrsyH
0pBz+GKixX86QF6y0HaqkYYg3HFF+5s6kMv/zOVWkzTgLZxNDhfoQFaVyazk
kDS4PpYPzq7QAQnz4iwHaRnQ2iq8dr9aBx5Ntwn1qsrA0si/hMrnOrCV8mtC
SE8GctQGCj+80gHRBfV5U2sZCGJ/NOp7qwNi6csSZltlgLWv8eX4ex14mUnO
6HSRgcG0wj6+Lh1w62z52HtEBp4a/ndUqlsHFl5wJW8NloHLbfErar068EGQ
q9ElFMsvECRjNawDXw7k3zKLxfIX7C9wGNOBsoXpfdKJMvDOegfdbUIHfnt4
Pb2WKgNHwxnbQuYxfkPl/ttuy4CVnMb3yGUdOO6lMPZfgQzgK2UCrq/pgN1/
j20iimRgYKfAUg6OAj/tSxNxj2XgyeRyTBEvBfbUzH4nlstA9NVxySpBCiQW
/9zSUykDLtq9d16JUmDZK+a3QY0MaLxuo3WIU4CZ5Ped9FwGFr1e1PdLUyDc
tsL8KRvjt/5k64Q8Bbj6iaT+FzKQnXO3e0UZiz8wW3H/pQwEmqb7CqhT4Gkn
t7joK4xvV+y8tCYFLMhV7vjXGN+TZ6NJFAoc+7lW/hjDA2IB4ob6FDib77Jx
HMNPivfdZtEpUK31Uv81hqO3OFEdmRRwN/2cZ4lh12FWnbs5BaQcH7zcicXX
jDKw92VRQNH6M+JpxPiqqH85tZECVoLRr10bML51kj5Rmymweacrly3C+Lrx
ziU5UOC++pnCDqy+wPmFyNxtFHCNSBpax+q3ShkVK95FAc2l5j/vnsmAGK3n
ZvVuCvhZfVhgPJWB/pYWypu9FBgpajSxKsX4+tVXf9pPAc+3m0aGH8pAFG/p
5sFDWH2fjrL0C2XAOT+vc/IIppdBa6jMHUxfSDn0L4ACxj+C2m/lyMDCt+hp
wWAKDPxriWpKl4EsaV8RjVCs/tC/yytxMlCjuN1h4hwFNvF660RGycBXNZO4
yosU0Ll6aKI8XAZk9fl5NsdSwJT2V0I9SAZMjKasxRIoUCysObLfRwb2mH+J
+JxIgb1TGsYOnjKQsfn+6pF0CoiWXKFRHWWg0jHJjJZFgQtCgns0bGSga1do
6OJNChyfSJt8byYD0gfs5q4UUKBix7VgXU0ZSA0d+f3gKQVIyUIc1FVpeHqh
XftEFQUC5XOG709JQ0d01RGzOgr0Tfjs7cT2n/iNKz/evaTA19I1gk2LNNx4
oNXz+yMFtiqPdkdkSENit+87vWkK/FsJ3lKnIg0l/dv55+co0FmarxwiJg3v
h01s6xcp8Db97rnBNSkQnuVvcOLQBQdVlu7QNylIEHpQfUxMF5JPA+NymhRc
sRi9X6anC+FK3GrXlyThvvWH4bMGuvDMaPFo95AkNNlVk6yNdCHsaqT6YJsk
8LnE3f5ooQuXeUUOahVIQsxR7cxZB11wPH3IP3urJETl+sUa+evCuYOTnqHX
JcBmr8+4U5AunCdf+loQIgHcsod2+J7Qha4bnp0JbhIQfWOfQnaYLlTP3kyO
UpOAmOhtjzkSdMGaT17dsEwc4v2NPjc/1IUXG7deE20gQJIxp6bXH104fFJH
XixQDLbP/ks4N60LTxt8r3RriAGhdHkq9a8uXPC1trIaEIVk7bmaN/90QfmR
U1OHsyikKv5y0hPVA4e43rh9TBHIwL0/vUjVg1lfUjfhtyDktma+TgzWA+3u
hzx3pXlBuRq40kL0oHmjf/O1Jh64mT/Cyg7VA2KK4l/LMB7ICTWpLozQg83/
3D/Mf+OGLLUvD1GSHhT2iztM3eKC9NMyN2ZK9eCk9SZxmhInJCqn73Wd1oNO
Adfc0tUF1oWglCmlE1Rwfhn60cX3HWtrg8H33lNU6LZvz/6Y94olL93+9tZZ
KrjQdgq+/4ZYFc+F81UjqcC54/flaY9HrHHhGBdyEhXm1689+mnxjO3+MLRG
t4QKltzVNlWpX9hGIx7R5mNU0KD+eHYhZYKNs1gNXv1DBW2prz8jyibZ7dez
PJ5PU4Gx77+kXUem2IHMz8asJSo84evJ1oqaZt+J2T5qza8PPl4KKXsrZtl4
8kYnew19eJhyocQNt8geP6gl6+alD/E7nV2D5DiQe2APJcBHH1YbIl6WenCg
t6cTWef99WHLn1nOlDwOdC9hzifvhD5IRC6p0rU40YEKVDF6SR/y5b7ef0PD
oU/8brvC8vXB6K+8/WkqN7KWED5ytVAf+F9LRW0O5EZlSuyw3If68Hzc2rjo
ATdKNCTfaSjXhwuSxfVEdR5kt296SrARez+TWV2L50W1j+MSs4f0ITVwPnWl
kw/p1FjceTSiD/vqYjlihPlRZuNkBXtcH1r1D5enWfOjkK8u33/M6YPYhlma
9SN+lMFJkE7H0aBAveNrXbgA2kH57t0rTgPqPpuFIi4hdKW0MuiXJA0WONo9
LQyFEDJKCp2SpkG3yAX1LQeEEBU2XsUp0EDG4lDOxxohJOTyoFxDnQY05p3a
dD9h9OrCKdwxOg2+3baUPvNIBN01sfd2MaLBb9Eo7fV2EXRpRvm1OZMGQ5aK
KiJzIsjKpymO35wGKzzNR6tNRFGVowLhjjUNdgqJaDvUiaJ0vqkTV2xoMM7R
+2GpRxSFvGj8FGRLA8pAPK/uiigyMArKNLenQaXiSyF5EzFUpPhCpXMHDRxD
i6qkisXQla60yNpdNDi8bjH89Y0YOpLk/yPPhQYWuHWk8kMMkbglC4PcaPD6
n/5XGWE8uvnbh8p/kAYOzaOP9KzwKLzAPGnCiwb0ofO9EvZ45L4fP/PJmwYp
HB6GNS54JN1RXZHnS4PkJY1V20A8SqoRtjQPpkHZ2WiX/el4FBQykKt6ggY9
iWGfbW7jkSO1koM/hAbDhw/zjD3AI8E7+xs/naGB8A8985N1eDSyl6FRe5YG
+nz+tN2v8Oi1lMCVvHM0wIXuLl5+j0dRcU8cgi7SYPsTS6WIXjzy2hj7yDmS
BjyC3Hxew3gE//aKmUfRYAtL+iDXBB6tBvN08MXSQIU+4ha9iken9+xxz0uk
wYW04xYXpQnIWVyvLjaJBou/tkTsUyQgegunclAyDU7YzNGXVAloivVwwCyd
BhW1kyvBugTUunRxo2omDb4gosJWAwIqLncu4MuiwfvmQfawEQH5aa75frpJ
A6E9X6rdrQjIbuDju5pbNIi3pKoyrAlII7tQNy+PBk7rewzfbyIgbpfwxNh8
GhzqKVokbyGgQdEdU0cLaMBe3RthtZWAUBN5p3MhDc4sxHVJbyOgW5eWy80e
0ODrBqbA4x0EdMGiTUr1IQ1Ci+w1+ZwJaN98/hm+R5gfmxNBxZWA5Dc7bRoq
ocHlUItnE7sJ6EvGoviLUhp8tupsinAjoPSRO/03n2Dr01Ue0+mO6WHqWBL2
lAbpplxcf/YSkHj8wrndlTQwlqjf/mYfAbV3521hVNHAjV4S5e1BQImUrTKE
GhrkLweUNmLYIXx+6E8tDV698hj/hWH+97efvHtOg+8uzxxbMfxaySGikE2D
rcZnf5/BcHTQX8foFzT4qxL8fQiLb82+pXDwJQ0G3RgWUhjmwNuPWr6iga+M
tqoAxqf+wFyl/Bsa1Hecu4cw/uFludELTdj6P1T/Zb6HgMxwW3Z+eofpU9q/
FobVv7hzVqWshQYuNuaCFzB9KvNv/rnWSoPbB6M0Nu0koJC5zbX+7TTgm247
3o7pa7hp5srmjzRIkFgTJDpi65+W40r6RAPZo6UEhj0BlQzbkji7aGAU6HRP
eDMBaV/JZtd8xfZfYf2aEBDQ8JdN1zJ6aPBDzoCPbkFAd7Wn3EO+06BdoVVD
xYSAiM0283oDGFaVs9ysT0C9CpMvBX/QoLby2IUoHQLKCfzvxq8hbH18IfAy
mYBkRSd080awfvCkbaxbnoC6PDOXz4/R4MAMuYUqRUCpj62b3Mcx/yyrr9iJ
ERB+R8YhySls/4ru+N2OIyC+VMiKXcD0Pxvynf4LjxqHxo54L9GAWP9nsr4P
jy4ZpRltWKFB5zS1gvAFj9a6RtuX12ig3ECQFWvCo3m5FL4gXgM4I3/6XlAB
Hj31t+y05zcAS719ZRY5eHSi9tcdTUEDaDcQ5vyUjEcT+yysBkQM4OrnSpv9
F/Fo+NbPEGcpAxDm/7F3AusXnWSTQTOSAazMNTVumBFDQx8CN4KGAaTl3j0o
9VkMzZzPu7tJywBYVi+qgmvFkGiX4JHtuli8ygjVF5fEkF3M99+HGQYgbmMm
3CMkhmqGL/1NsjEAkY3iwvH8oqgp+Zlruq0B+DVyC2kPi6Auq/Fn2XYGsLSS
+sj9pQiaTXcJu7fVAHqZqe9Dw0WQ7mat9VpnAwgaanKrGBVGuYXv+X95GwDb
bdSsp1QIFe/C+Y/7GEDP6uHw9VghVLNu3DztawAbeaQaGjyF0Ofdt6+tBhrA
aFbvLW0hIYTnPykufsoAJJ9v/3B9vyC65CuraHnZABS3DhufW+BHR7QP6acU
GIDD6w2zE6M8SFEwZeRUoQEEOmtfwtfwoI9jDXl7HmB8Psaqz8fxIItiNUnl
RwZgwcv9EK/Ng8T1BxfvPzWAmwaadpne3KiecbCh/qUBHH0pT7/1AYckYb/L
2ABWL+Gsp4L4Ohu57j23QdkQav+7Z9TMmGa/TpZq2ko0hBkJz0yhmil2S2ub
5B41Q2jsqkpnsqbYn21tSoI0DCHD5YdlRfIEe8JYbyCbagiuH9xThGvG2Ioy
67bzVoaw/XTt4TC+H+yzn++IP9xvCHwF8ykOLc/ZFyQ89lceNAT1PXEbnY0r
2dHbZIpfHDKEkXeJWga2j9hJbxI2fTliCKbteVK6xZ6s+89CQnmCDSHbY/dH
g6R6VleGbe/+CEMYnCjwU7nUxTLcM/ZAMs8QQKyPJFM8yupruuX0744h1H0y
Euw+P8a6auoy+/OuIQi0jEb+dvrNGpZHFs/uG4KvUgNzcmKc9d/3tDa3UkP4
dXphWVpiisVxaMPfXLYhSNroHc9mzrJaj2aCdq8hJHXg1np0l1jneh1/EvoN
Yf89swHSlSWW1jau+OUBQ7AmmuL/DC6xLtGCOpp/GsLTg0v98+nLLKPZjT5B
fwzhyp/gmg+LK6yc0MmE8lVD4KmbPPjszhorIMr2s6UCHTqPN3XoNnLCYvyH
X4pKdJjwPWwiPsIJ0cn7FleU6SAuEjZcJISDnLwTcjVqdOCwbsye24GDVnbu
XmMdOsxGlcj0dePAcHW+j2pKhz2nNOpefOeCeq5LUyLmdPh2FrPrKhc4CIlw
/rGgQwKfV6OjAjd4y6urPQQ6NM57ouu7uSHdZJu3ph0dQp1CjXRbuGEppHBE
ZTcd5Af6x+IKeCAm3HBpbQ8d5g5uUGaweUA8+rlArzsdRnb86Yn9wgM6KR06
OZ50cIl6Jk4R5IV9ZeuBsj50CPR5c97djxdGquLPLxyhQ+pva0GHCF44haQS
u/zowFNw6dyPdF5IbKM8Tj1Kh7vH/u4QeskL6M/uafwpOvx3aM+agQwfbP07
yDl1mg5nlvM/76PwwdfVo+JtoXT4mx9pTWXxwYxQNP1aOB1uS3ebNx7mA5JO
6SmBaDo4rSSKVJfwQamBeczIZTpsdpypkUR8YGn6Ov1NLB2GH7GWpD7wgavd
t2eXE+iQ4deI+Gf4INaHf5kzhQ41/K/Hi/X5wfutUq5AGh1+jRw092PxA+jS
rQkZWL7b4c41TvywPO0RT8ymg80ZzQz5QH747HySqnUTw975N7XD+OHpsysf
9W/R4dpwiNb7WH4IOl8uz8qnQwTNP/NDHj849DfV2xbQIXdvnq9hCT9obez1
ciqkA2/zrhTNGn4Y4Bd46PGQDsGD5QOt7fxQH6C87fAjOnb/TViL6OGHrFb6
bOBjOlyU0vd985MfnFM9zcPL6eBw9IwmYYkfDBZO9kVV0OGKtW20JE4ARN3j
ohKe0UEw1ciiWFAAmlSeNmfV0uGO41RvprwAFFx6e+zOczp4tbT2/lEVgEs/
eyWK2HTgNpo59FlLAMwfCuyrfkkHyxd65r5GAiArqsLx4hWGE8ilYuYCMBfM
uNv0BvNXmsqUAwjAh44tdu1v6WA63IFX2iQAJcb7xz8304FT9bF21BYBSPgv
JKnvPR3wZz7suuAoAL6rcYxfbXR4elWkSHSHAGzaf+vLxAc6fHH7ZcdwFgC1
hqfh8x10KORKcZp0FYB10jviWicd8h7PdrPcBOBbbF8jzxcs3/YsMY29AlA1
Nucr0k2H7/6NYnf2CUCao6CI1DfMX5/dOZ56CMCJUpUyxV7MH2FTfPs8BcBJ
wsiF1E8H17/IKQvDlNP2S5RBOmi5Pl4LwjD/1/036UN0MKm12diNff/T/NQG
82E6vJkt2fINi9+QG//TeoQO/nJsOIXlv8V5O85+jA7m6iN7CjB+4d4VejvH
sf17wrIxcLcAuL1598Ftgg6le49XNmP1Gev0nzo4hfnvTod3A1a/+LW/cn4z
dFBb3sa7w0kAJicF64PnML1PBXacsReAlp1Er9B5OugubOZl2grA/Qoj3ohF
bP2yM7sTNwjAZVmHothlrJ/IFl27aCEAXucOOF1fxfSQx6plCgCr99RM+hod
wm4Rr+kaCIDihoT0XA4GxMHy3lEdAejirex9xM2AvXJolKYkAOV+zZcqeBlA
0TzFqJMSgKSWfo3n/Ax4cvq98aCIAGxJFjrWIsyArEvf4tdX+UHjL1HikygD
+ruyQhZm+QG3x/hZDx7DI3y2CWP8UKd0cH1MkgFiWdf7Y7uw/VVxfKVNmgGL
1XFaD1r4oXHrpYWnsgwwpc/vCWngh5Zz+ZMXFBngYHc5XuARP3z7+rNPnMQA
zS6cOPMCPxw4Pt+zQGbAt8dmZx4f54chfr4v3zQZ8FXOBP/Jmx/GmVrt9ygM
6I54JaNuzw8raf7IjM6AlRLH7QN4frigd65OxYgBSRNbVBo5Mb6vEqq4mQxg
nvxT5oL1B8G54tJWMwYIfHp3PuYjH8jvnLztZc2AzP86/LSu84GZaEhk/A4G
DAT05NUv8UJ9QfT5Y7sY0LsqfabqJy9YW6addXZhQLpgw5TPB16wD6w8ruzG
gAftHf4/CnnB/d3iwScHGGDeHNh7eAcvnI05b919jAEeX2+8m0jngVWlRCv2
cQacHy2s9L7AAxEVuWZ3TzKgK/2gePphHrgyxDYMOsOA1BOtI7p0Hsi0xqnj
LjJgpPXXH2YzN1StxXDpJDLAjxBcozvJBVenVVOYSQy4/k9LTaedCw4M1alt
SmbA6c6O1b5SLhB4N7PhQDoDPns8TjtznAvc0zwj0nMZMJzBv8t3Egf/KMb/
cI8ZEFbdhAZ7OcHa7ed8TxsDfnv9JzGvus56X75x7BrBCHKXHIlpHXOsRqLP
66vJRljf9CvZ86yMrdL3QS4o1QgmakauUV5UssNuWh7dlm4EG+zOpTY11bJp
8lKS4llGoOsisydxpIGdI9F4MCPPCKrM1N5oDbawQ3jV/uWVGgHRNn49acsX
Nmn8O/1ZqxEYBhQefl/8k32xaEtsZrsRXKz3YxhuGGZ3+1Z0n/1oBB8PqHSL
dQ6zk35ejbToMoIb9lOm1JVf7NVe87YX343gWLpL80sYY3/68J9/y7gRPA+p
EWc/nmBHPXPJGxA0hial/W9Dr8yyqR8crvwWNgZkpn3q1/tZdvfYhmN/RY1h
z4jI62HxOTZNmWopIGEMPw9axKVkz7F7o3m/0hSM4Z+m6fGEwr9s053P8BEU
Y9jR+5FIebDAHgp4tBCnZwwbG/tLjH8tsJMu5/em6Btj67ShvJG0yB6uul5c
SDeGsCqzn965i+xUFV+7NnNj+M5O7r+VsMSeHJeNUN5qDM/yvJp2O66ws3jF
jmg5YXxvP16jRq2wbYk8TobbjaHFLqIvvGqFnbNrWsHW2Rgaxh9zh6musu1r
3j47us8YfNvsNEfGV9kFsWGTdYHG8Hrt4AVRvzX29rzgrtdBxsAkK+7jS19j
r9b4PG8PNgZKy9+cow1r7J0TOxOGQoxhzPbe9gi5dTaHC0VT+LwxnJR541SG
1tl71b557r1mDEvqIh7BZzlQSfD7m9bXsXotRX7h4zkQB7v+m/YNYzA0WyoI
yuJAd/fmuS+mYnx39JkerOFAE6k+rmk5xnBYxtVIZYEDwY/daeG5xlDbodBT
wMOJUgy2fDp02xhGZdLqRyQ4kUkrZafhXWPYfEWv644+J7rEN+3Y9tAYFm3M
C34e4kSfXAavVj7C9Ov4mOgQzIk073Y033yMreeg33pgOCdqgcotgeXG8Glt
v95gCieSDju3SaAWq8/SaiWFzYl8mwKjp+qw97PTnT+95US10p4vP9cbw2R8
Xn1bByc6UA4b7jUYw+WPlTkLw5yoaJzHcuM7Y9Dzo9wWFMShVbOFczotWDw4
kKEmjkPb4kZqCK2Yf44I+v2Vw6E5crNJ/wesnpexKc1aOGQbUnfmTYcxyIRW
j7Xq49B/DY8qSzoxXKcod80Yh6z2JzHOfzWGDVriXGYbcSjpUeRJ7x5jeH/x
V6PWFhz6sXLiicN3Y3CZPOn/0QmHrmS60OQHMD1vcoW6uuFQ97DtMc4fxhC5
S3WC5olDekYmJSNDxtClrOP92guHPn6Q1302YgxP80ZOqwXgEIkoHJA7Zgy5
yxHao0E4dCbo34PL48aQk9vEF3ACh97VTYwEThhDlq2Cyv1TOKQo1K/pPGUM
rwSbz98OxaEgtw8+5jPGcLZdhe58DodeFDYUqM0ZQ99T120vz2P3l/nyIYF5
Y9gUkvfjz0Uc8rEpUJ9eMAaLVjLuUyQOVSWne31ZMoajw6vPT0XhkNBAbB57
BdP3jiGlIxqHPPXP9t/7Zww9uFee45dxqPS8v0riujGIn88PehGDQ7iWvZ6n
OJlwY2vJ8Z2xOOQi73hzHxcThF9VXLyF4fu+Vt828jCh6dbZsvsYXq7UV6Dw
MYHf9j4xCMO6OfOv+AWYkNH6SWAWi+cZ+Tx4WJAJhnnWfEwMJ/lEKzQKM0Fh
vpZuhuVvcHB4nSfKhLU3Q0WrGN85mvjxi3gm/KdqFnfhEg5pSH9V8BBnQqkv
YZwdgUN7Vm69NpNkwp57GdPoAg7F9/scl5VmwvGW9qrIcByqe6WnOC+D5V9M
P4gLw6GJornXHXJM2PH0P+GNZ3CImFR7vEyBCXmGHj0bQ3Bo56lLiteVmMCR
YDrFfRyHot23vAlUYULKtFtQzFEcqmThT9irMmF6vPZskx8OyQvmvuEhM+HW
lR0tiQdxaOuk94kfGkxwv5G6X8IDhy58oii90GKCtJuxrNseHBrMrT4RrssE
F4uMLC3MX5LREUruVCZ8P/m58okd5l+/zU1MGhPqfp2+uWaNQ0X0TqVZOhNc
LZLPfMP8+002p6ndiAmHN/x8GUTDIdE1r5MlTCasrG68+lIbh040TTX5mTPB
Y+SIQ4UCDpl5CIf0WzOB75rd6/pVThRo3aFcb8OEXW4Xaf5znChXM+ttti0T
ck2Mbn39zYlwM5oqu+2Z0MpVuY+nmxO9i9n47v0OJtz7endjejknWg0QPPVw
FxO4UrSrjjzgRNQdH1TiXJjw/kL46FouJ0pW2H/Kxo0JuiJnAy/GcSL30jBi
7QEmvD7XF9G2lxNdTdvQnOmF8av4fqhzGyeqD+M/fdqbCc4bXo/e2ciJ1Dal
Nxv4MmFB/nJvmg4nGvtadvr+MSboqz5KHvzLgc5xjbakXWDCoqNmzM5LHGht
o5lQTgSm52OSft5xDhQRnbDlziUmvBjISn9ygANF81Bfl8Rg+phzK6lYcaBE
vpPsN4lMCAzWMto1vs6+I/SvbCkX8wfdQu1Z5RqbtNVpav025k+7Q6X8iWvs
wqu3qLz5TDBXVHUZ915jF4tYPxQvZMJN1mvLo4Q1doVY7F3KYya8nd7ifvTw
P3aTBCHDg435K7ujUHt5hW3v7NV56AUTqga9dbibV9jvU8sl/F8yQa3Q5P2F
7BX2RynXpNNvmHD5mLLaHvMVdo9Mdtz1NiZcL7YVrTi9zJ5QIIe/6GMCr+jI
49/fFtlSJNODZA4TqGIWdygF/WVb/Xd5gR9nAg48i6MlJn/ZvqIfr41zmUDf
Fys2H9dfdt2if005nwnMSIlwSmbMsb3e50hYi5kA+7LMyZK6WXbJaY7Xnsom
wLtr19/7a9Ns27dvdDItTKD/SJym/5tx9ukg1znBsyagNt3+WDyhh61g7N2k
cc4Ewq6t/x47181G/47nWJ83gb/OF1LqA7+yBa9dswmLNIHW0et6AU6f2bkP
G1NH40yg6MrqHk/xDvarEUOjpizs+6AbfukbXrElD4mdvlxnAsHedbIRKlWs
ah0l+7x6EzCKOFngYFbH8pzRUX6OTCDx2K7vQdqIdT/S9vVcowk2F7v9jLVq
ZJnfPi/t/d4EVsSG0A+3FpbX99+V1r0m4KadUzui0cXiK1iK9+w3gR0fizOf
qn1mFQfy7Q8bNIFjhD1xJUpfWPMranxPhk2gxmbopCKhmxUv775bddIETh1t
2Bz85ztLf/AIxXLaBN58NT1tMdjL+vTg1PqeWROQrjkxLN3Vx1I2vVGYtGAC
SbEbr5z83s96yXHrXPGSCQQ8qrs25jLA8m0q3ta0YgKZShY8A+8HWMJJNepD
/0xgOChH0GXTIKtsd9PC+roJrGW+r7OpG2T9D8q5wTI=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0},
Method->{},
PlotRange->{{0, 25}, {-25, 25}},
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.593991890174261*^9, 3.593991964377505*^9}, {
3.5939920296562386`*^9, 3.5939920672733903`*^9}, {3.593992200777026*^9,
3.593992208143448*^9}, {3.5939926553320255`*^9, 3.5939927047048492`*^9}, {
3.5939927565818167`*^9, 3.593992774393835*^9}, 3.5939928484090686`*^9,
3.593993635821106*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"E", "^",
RowBox[{"(",
RowBox[{
RowBox[{"-", "beta"}], "*", "t"}], ")"}]}], "*",
RowBox[{"(",
RowBox[{
RowBox[{"x0", "*",
RowBox[{"Cos", "[",
RowBox[{"omega", "*", "t"}], "]"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"beta", "*", "x0"}], "+", "v0"}], ")"}], "/", "omega"}],
" ", "*",
RowBox[{"Sin", "[",
RowBox[{"omega", "*", "t"}], "]"}]}]}], ")"}]}], "+",
RowBox[{"RandomVariate", "[",
RowBox[{"NormalDistribution", "[",
RowBox[{"0", ",", "1"}], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"t", ",", "1", ",", "25"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.5939916579359775`*^9, 3.593991743102849*^9}, {
3.59399261589777*^9, 3.593992631842682*^9}, {3.5939929144368453`*^9,
3.5939929390522532`*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"20.438809919319155`", ",", "11.123777637611314`", ",",
RowBox[{"-", "4.393062802352463`"}], ",",
RowBox[{"-", "15.266561275689375`"}], ",",
RowBox[{"-", "8.836028917453934`"}], ",", "2.954018016351281`", ",",
"10.606229007729045`", ",", "7.45963868163728`", ",",
"0.14440028329137078`", ",",
RowBox[{"-", "8.341182108773172`"}], ",",
RowBox[{"-", "7.567308214598575`"}], ",",
RowBox[{"-", "3.089520664366032`"}], ",", "3.9061012763570626`", ",",
"4.387999683914941`", ",", "1.121608786468672`", ",",
RowBox[{"-", "3.2621346344263022`"}], ",",
RowBox[{"-", "5.391572524189788`"}], ",", "0.5781773032042266`", ",",
"3.5738104573505387`", ",", "3.070063907864874`", ",",
"2.193498314968796`", ",",
RowBox[{"-", "1.2544883405357776`"}], ",",
RowBox[{"-", "2.064373632378543`"}], ",",
RowBox[{"-", "0.40470258482677657`"}], ",", "1.8400006745769635`"}],
"}"}]], "Output",
CellChangeTimes->{{3.593992623692216*^9, 3.593992632236704*^9},
3.593992712650304*^9, {3.5939929057523484`*^9, 3.5939929398252974`*^9},
3.593993644472601*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[",
RowBox[{"{",
RowBox[{"20.438809919319155`", ",", "11.123777637611314`", ",",
RowBox[{"-", "4.393062802352463`"}], ",",
RowBox[{"-", "15.266561275689375`"}], ",",
RowBox[{"-", "8.836028917453934`"}], ",", "2.954018016351281`", ",",
"10.606229007729045`", ",", "7.45963868163728`", ",",
"0.14440028329137078`", ",",
RowBox[{"-", "8.341182108773172`"}], ",",
RowBox[{"-", "7.567308214598575`"}], ",",
RowBox[{"-", "3.089520664366032`"}], ",", "3.9061012763570626`", ",",
"4.387999683914941`", ",", "1.121608786468672`", ",",
RowBox[{"-", "3.2621346344263022`"}], ",",
RowBox[{"-", "5.391572524189788`"}], ",", "0.5781773032042266`", ",",
"3.5738104573505387`", ",", "3.070063907864874`", ",",
"2.193498314968796`", ",",
RowBox[{"-", "1.2544883405357776`"}], ",",
RowBox[{"-", "2.064373632378543`"}], ",",
RowBox[{"-", "0.40470258482677657`"}], ",", "1.8400006745769635`"}],
"}"}], "]"}]], "Input",
CellChangeTimes->{{3.5939969704618363`*^9, 3.5939969724269485`*^9}}],
Cell[BoxData[
GraphicsBox[{{},
{RGBColor[0.24720000000000014`, 0.24, 0.6], PointBox[CompressedData["
1:eJxTTMoPSmViYGCQBGIQDQEf7O8sOnMjtMDEASrgMJEj+ES8vRqUz+HA3KzK
Vz9J8ACEL+DQ/c5oR1WHHpQv4qD1ufQ39xpFKF/CwcJggdGVhexQ/TIOSVos
y5LNVKF8BQeP/GOtq6/JQvlKDjGNSvFbqw/ZQ/gqDlVB97LXr1OAmqfm8Pz8
xcI3LnJQvoZDlarenLDtHFC+loN81zK2Tfb8UPN0HCaIs57y7xWE8vUcOhfw
8Ml8+gg138DBTkSA+5YEF1S/oYPoQtfkHxNEoXwjh0/LBDfkNjyCqjd24Et+
/F5zOg/UPBOHG27tq2r7OaB8UweOXyY3PHoYoXwzBwmOvbFJQl/2Q/jmDmLB
64KuNTNAzbdwOMc0Z/XSZzeh8pYOjy7I9Swp+GsPAB1KZdI=
"]]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0.},
Method->{},
PlotRange->{{0, 25.}, {-15.266561275689375`, 20.438809919319155`}},
PlotRangeClipping->True,
PlotRangePadding->{{0.5, 0.5}, {0.7141074239001707,
0.7141074239001707}}]], "Output",
CellChangeTimes->{3.5939969727159653`*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{"(*",
RowBox[{
RowBox[{"pure", " ", "fibonaccci", " ", "numbers"}], ";", " ",
RowBox[{"no", " ", "error"}]}], "*)"}]], "Input",
CellChangeTimes->{{3.5939914977218137`*^9, 3.5939915040271745`*^9}, {
3.5939938182575407`*^9, 3.593993819321602*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Fibonacci", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "1", ",", "25"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.5939914563154454`*^9, 3.593991494147609*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"1", ",", "1", ",", "2", ",", "3", ",", "5", ",", "8", ",", "13", ",", "21",
",", "34", ",", "55", ",", "89", ",", "144", ",", "233", ",", "377", ",",
"610", ",", "987", ",", "1597", ",", "2584", ",", "4181", ",", "6765", ",",
"10946", ",", "17711", ",", "28657", ",", "46368", ",", "75025"}],
"}"}]], "Output",
CellChangeTimes->{3.5939914947646446`*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{"(*",
RowBox[{"Half", "-",
RowBox[{"life", " ", "of", " ", "iodinated", " ", "contrast", " ",
RowBox[{"(", "hours", ")"}]}]}], "*)"}]], "Input",
CellChangeTimes->{{3.593993010241325*^9, 3.5939930152896137`*^9}, {
3.593993208257651*^9, 3.593993210896802*^9}}],
Cell[CellGroupData[{