-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathRAdam.m
68 lines (50 loc) · 1.62 KB
/
RAdam.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
function [updates, state] = RAdam(gradients, state)
%RADAM Summary of this function goes here
% Detailed explanation goes here
if nargin == 1
state = struct;
end
if ~isfield(state, 'beta1')
state.beta1 = 0.9;
end
if ~isfield(state, 'beta2')
state.beta2 = 0.999;
end
if ~isfield(state, 'epsilon')
state.epsilon = 1e-8;
end
if ~isfield(state, 'iteration')
state.iteration = 1;
end
if ~isfield(state, 'm')
state.m = zeros(size(gradients));
end
if ~isfield(state, 'v')
state.v = zeros(size(gradients));
end
if ~isfield(state, 'alpha')
state.alpha = 1e-2;
end
rhoinf = 2 / (1 - state.beta2) - 1;
% update biased first moment estimate
state.m = state.beta1 * state.m + (1 - state.beta1) * gradients;
% update biased second raw moment estimate
state.v = state.beta2 * state.v + (1 - state.beta2) * gradients.^2;
% compute bias-corrected first moment estimate
mhat = state.m / (1 - state.beta1^state.iteration);
% length of the approximated SMA
rho = rhoinf - 2 * state.iteration * state.beta2^state.iteration / (1 - state.beta2^state.iteration);
if rho > 4
% compute bias-corrected second raw moment estimate
vhat = sqrt(state.v / (1 - state.beta2^state.iteration));
% variance rectification term
r = sqrt((rho - 4) * (rho - 2) * rhoinf / (rhoinf - 4) / (rhoinf - 2) / rho);
% update parameters
updates = state.alpha * r * mhat ./ (vhat + state.epsilon);
else
% update parameters
updates = state.alpha * mhat;
end
% update iteration number
state.iteration = state.iteration + 1;
end