forked from matpalm/bnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
executable file
·176 lines (155 loc) · 8.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#!/usr/bin/env python3
from sklearn.metrics import confusion_matrix
import argparse
import data
import datetime
import json
import model
import numpy as np
import os
import sys
import tensorflow as tf
import test
import time
import util as u
np.set_printoptions(precision=2, threshold=10000, suppress=True, linewidth=10000)
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--train-image-dir', type=str, default="sample_data/training/", help="training images")
parser.add_argument('--test-image-dir', type=str, default="sample_data/test/", help="test images")
parser.add_argument('--label-dir', type=str, default="sample_data/labels/", help="labels for train/test")
parser.add_argument('--label-db', type=str, default="label.201802_sample.db",
help="label_db for test P/R/F1 stats")
parser.add_argument('--patch-width-height', type=int, default=None,
help="what size square patches to sample. None => no patch, i.e. use full res image")
parser.add_argument('--batch-size', type=int, default=32, help=' ')
parser.add_argument('--learning-rate', type=float, default=0.001, help=' ')
parser.add_argument('--pos-weight', type=float, default=1.0, help='positive class weight in loss. 1.0 = balanced')
parser.add_argument('--run', type=str, required=True, help="run dir for tb & ckpts")
parser.add_argument('--no-use-skip-connections', action='store_true', help='set to disable skip connections')
parser.add_argument('--no-use-batch-norm', action='store_true', help='set to disable batch norm')
parser.add_argument('--base-filter-size', type=int, default=8, help=' ')
parser.add_argument('--flip-left-right', action='store_true', help='randomly flip training egs left/right')
parser.add_argument('--random-rotate', action='store_true', help='randomly rotate training images')
parser.add_argument('--steps', type=int, default=100000, help='max number of training steps (summaries every --train-steps)')
parser.add_argument('--train-steps', type=int, default=100, help='number training steps between test and summaries')
parser.add_argument('--secs', type=int, default=None, help='If set, max number of seconds to run')
parser.add_argument('--width', type=int, default=768,
help='test image width (assumed training image width if --patch-width-height not set)')
parser.add_argument('--height', type=int, default=1024,
help='test image height (assumed training height if --patch-width-height not set)')
parser.add_argument('--connected-components-threshold', type=float, default=0.05)
opts = parser.parse_args()
print("opts %s" % opts, file=sys.stderr)
# prep ckpt dir (and save training_opts for restoring model later)
ckpt_dir = "ckpts/%s" % opts.run
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
with open("%s/opts.json" % ckpt_dir, "w") as f:
f.write(json.dumps(vars(opts)))
#from tensorflow.python import debug as tf_debug
#tf.keras.backend.set_session(tf_debug.LocalCLIDebugWrapperSession(tf.Session()))
# Build readers / model for training
# training can be either patch based, or full resolution
train_imgs_xys_bitmaps = data.img_xys_iterator(image_dir=opts.train_image_dir,
label_dir=opts.label_dir,
batch_size=opts.batch_size,
patch_width_height=opts.patch_width_height,
distort_rgb=True,
flip_left_right=opts.flip_left_right,
random_rotation=opts.random_rotate,
repeat=True,
width=None if opts.patch_width_height else opts.width,
height=None if opts.patch_width_height else opts.height)
# TODO: could we do all these calcs in test.pr_stats (rather than iterating twice) ??
# test images are always full res
test_imgs_xys_bitmaps = data.img_xys_iterator(image_dir=opts.test_image_dir,
label_dir=opts.label_dir,
batch_size=opts.batch_size,
patch_width_height=None,
distort_rgb=False,
flip_left_right=False,
random_rotation=False,
repeat=False,
width=opts.width, height=opts.height)
num_test_files = len(os.listdir(opts.test_image_dir))
num_test_steps = num_test_files // opts.batch_size
print("num_test_files=", num_test_files, "batch_size=", opts.batch_size, "=> num_test_steps=", num_test_steps)
# training model.
train_model = model.construct_model(width=opts.patch_width_height or opts.width,
height=opts.patch_width_height or opts.height,
use_skip_connections=not opts.no_use_skip_connections,
base_filter_size=opts.base_filter_size,
use_batch_norm=not opts.no_use_batch_norm)
model.compile_model(train_model,
learning_rate=opts.learning_rate,
pos_weight=opts.pos_weight)
print("TRAIN MODEL")
print(train_model.summary())
# test model.
test_model = model.construct_model(width=opts.width,
height=opts.height,
use_skip_connections=not opts.no_use_skip_connections,
base_filter_size=opts.base_filter_size,
use_batch_norm=not opts.no_use_batch_norm)
model.compile_model(test_model,
learning_rate=opts.learning_rate,
pos_weight=opts.pos_weight)
print("TEST MODEL")
print(test_model.summary())
# Setup summary writers. (Will create explicit summaries to write)
# TODO: include keras default callback
train_summaries_writer = tf.summary.FileWriter("tb/%s/training" % opts.run, None)
test_summaries_writer = tf.summary.FileWriter("tb/%s/test" % opts.run, None)
start_time = time.time()
done = False
step = 0
while not done:
# train a bit.
history = train_model.fit(train_imgs_xys_bitmaps,
epochs=1, verbose=1,
steps_per_epoch=opts.train_steps)
train_loss = history.history['loss'][0]
# do eval using test model
# TODO: switch to sharing layers between these two over this explicit get/set_weights
test_model.set_weights(train_model.get_weights())
test_loss = test_model.evaluate(test_imgs_xys_bitmaps,
verbose=1,
steps=num_test_steps)
# train / test summaries
# includes loss summaries as well as a hand rolled debug image
# ...train
train_summaries_writer.add_summary(u.explicit_summaries({"xent": train_loss}), step)
# debug_img_summary = u.pil_image_to_tf_summary(u.debug_img(i[0], bm[0], o[0]))
# train_summaries_writer.add_summary(debug_img_summary, step)
train_summaries_writer.flush()
# save model
dts = datetime.datetime.now().strftime('%Y%m%d_%H%M%S')
save_filename = "%s/%s" % (ckpt_dir, dts)
train_model.save_weights(save_filename)
# ... test
stats = test.pr_stats(opts.run, opts.test_image_dir, opts.label_db, opts.connected_components_threshold)
tag_values = {k: stats[k] for k in ['precision', 'recall', 'f1']}
test_summaries_writer.add_summary(u.explicit_summaries({"xent": test_loss}), step)
test_summaries_writer.add_summary(u.explicit_summaries(tag_values), step)
for idx, img in enumerate(stats['debug_imgs']):
debug_img_summary = u.pil_image_to_tf_summary(img, tag="debug_img_%d" % idx)
test_summaries_writer.add_summary(debug_img_summary, step)
test_summaries_writer.flush()
# report one liner
log = []
log.append("step %d/%d" % (step, opts.steps))
log.append("time %d" % int(time.time()-start_time))
log.append("train_loss %f" % train_loss)
log.append("test_loss %s" % test_loss)
log.append("test stats { p:%0.2f, r:%0.2f, f1:%0.2f }" % tuple([stats[k] for k in ['precision', 'recall', 'f1']]))
print("\t".join(log))
# check if done by steps or time
step += 1 # TODO: fetch global_step from keras model (?)
if step >= opts.steps:
done = True
if opts.secs is not None:
run_time = time.time() - start_time
remaining_time = opts.secs - run_time
print("run_time %s remaining_time %s" % (u.hms(run_time), u.hms(remaining_time)))
if remaining_time < 0:
done = True