-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathpose_loss.py
246 lines (177 loc) · 8.39 KB
/
pose_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import time
from utils import *
import tensorflow as tf
import numpy as np
from utils.misc_utils import get_bbox_mask
class PoseRegressionLoss():
def __init__(self, batch_size, num_classes=1, nV=9):
self.batch_size = batch_size
self.num_classes = num_classes
self.coord_scale = 1
self.noobject_scale = 0.1
self.object_scale = 5
self.class_scale = 1
self.thresh = 0.6
self.nV = nV
def pose_regression_loss(self, output, target, bbox_mask):
# Parameters
#Shape of prediction [ b, 13, 13, 20]
nB = output.shape[0]
nH = output.shape[1]
nW = output.shape[2]
output = tf.transpose(output, [0, 3, 1, 2])
x = output[:,0:self.nV,...]
y = output[:,self.nV:2*self.nV,...]
conf = tf.sigmoid(output[:,2*self.nV:3*self.nV,...])
grid_x = tf.range(nH, dtype=tf.int32)
grid_y = tf.range(nW, dtype=tf.int32)
grid_x, grid_y = tf.meshgrid(grid_x, grid_y)
grid_x = tf.cast(grid_x, tf.float32)
grid_y = tf.cast(grid_y, tf.float32)
# print(grid_x)
# print(grid_y)
#Shape of predx [b, 9, h, w]
predx = (x + grid_x)/tf.cast(nW, tf.float32)
predy = (y + grid_y)/tf.cast(nH, tf.float32)
nCorrect, bbox_masks, conf_mask, tconf, targetx, targety = self.build_targets(predx, predy, target, bbox_mask, grid_x, grid_y)
nProposals = tf.count_nonzero(conf > 0.5)
# conf_mask = tf.sqrt(conf_mask)
coord_mask = tf.transpose(bbox_masks, [0, 3, 1, 2])
predx = predx * tf.cast(nW, tf.float32) - grid_x
predy = predy * tf.cast(nH, tf.float32) - grid_y
loss_x = tf.reduce_sum(tf.abs(predx - targetx) * coord_mask)
loss_y = tf.reduce_sum(tf.abs(predy - targety) * coord_mask)
target_conf = tf.transpose(tconf, [0, 3, 1, 2])
conf_mask = tf.transpose(conf_mask, [0, 3, 1, 2])
loss_conf = tf.reduce_sum(tf.abs(conf - target_conf) * conf_mask)
return nCorrect, nProposals, loss_x, loss_y, loss_conf
def compute_loss(self, region_preds, slabels, bbox_mask):
nCorrect, nProposals, loss_x, loss_y, loss_conf, loss = 0, 0, 0, 0, 0, 0
# print(region_preds)
for i in range(len(region_preds)): #Change this later
# print(i)
pred = tf.reshape(region_preds[i],[self.batch_size, 2**i * 13, 2**i * 13, self.nV*3+1])
total_loss = self.pose_regression_loss(pred, slabels, bbox_mask[i])
nCorrect += total_loss[0]
nProposals += total_loss[1]
loss_x += total_loss[2]
loss_y += total_loss[3]
loss_conf += total_loss[4]
loss = loss_x + loss_y + loss_conf
return [loss, loss_x, loss_y, loss_conf, nProposals, nCorrect]
def predict(self, outputs, bboxes, scores, num_classes=1):
def reorg(output):
# Parameters
batch = output.shape[0]
h = output.shape[1]
w = output.shape[2]
# use some broadcast tricks to get the mesh coordinates
grid_x = tf.range(h, dtype=tf.int32)
grid_y = tf.range(w, dtype=tf.int32)
grid_x, grid_y = tf.meshgrid(grid_x, grid_y)
grid_x = tf.cast(grid_x, tf.float32)
grid_y = tf.cast(grid_y, tf.float32)
conf = output[..., 2*self.nV:3*self.nV]
output = tf.transpose(output, [0, 3, 1, 2])
x = output[:, 0:self.nV, ...]
y = output[:, self.nV:2*self.nV, ...]
predx = (x + grid_x) / tf.cast(w, tf.float32)
predy = (y + grid_y) / tf.cast(h, tf.float32)
predx = tf.transpose(predx, [0, 2, 3, 1])
predy = tf.transpose(predy, [0, 2, 3, 1])
#Ignoring batch size and assuming single image
#Need to fix later
predx = tf.reshape(predx, [h, w, self.nV])
predy = tf.reshape(predy, [h, w, self.nV])
conf = tf.reshape(conf, [h, w, self.nV])
return predx, predy, conf
bbox_masks = get_bbox_mask(bboxes)
for i in range(len(outputs)):
reorg_results = [reorg(output) for output in outputs]
x_list, y_list, confs_list = [], [], []
if bbox_masks is not None:
for i, result in enumerate(reorg_results):
x, y, conf = result
mask = bbox_masks[i]
# mask = tf.expand_dims(mask, axis=0)
# mask = tf.tile(mask, [self.batch_size, 1, 1])
# print(conf.shape)
conf = tf.sigmoid(conf)
pred_x = tf.boolean_mask(x, mask)
pred_y = tf.boolean_mask(y, mask)
pred_conf = tf.boolean_mask(conf, mask)
x_list.append(pred_x)
y_list.append(pred_y)
confs_list.append(pred_conf)
else:
for i, result in enumerate(reorg_results):
x, y, conf = result
w = x.shape[0]
h = x.shape[1]
x = tf.reshape(x, [h*w, self.nV])
y = tf.reshape(y, [h*w, self.nV])
conf = tf.sigmoid(conf)
conf = tf.reshape(conf, [h * w, self.nV])
x_list.append(x)
y_list.append(y)
confs_list.append(conf)
# collect results on three scales
# take 416*416 input image for example:
# shape: [inside_masks, self.nV]
pred_x = tf.concat(x_list, axis=0)
pred_y = tf.concat(y_list, axis=0)
pred_conf = tf.concat(confs_list, axis=0)
total_max_count = pred_x.shape[0]
mean_x = tf.reduce_mean(pred_x, axis=1) #average x position
mean_y = tf.reduce_mean(pred_y, axis=1) #average y position
mean_conf = tf.reduce_mean(pred_conf, axis=1) #average 2D confs
max_conf_idx = tf.arg_max(mean_conf, 0)
center_xy = tf.transpose(tf.stack([mean_x, mean_y]), [1, 0])
ref_xy = tf.tile(tf.reshape(center_xy[max_conf_idx], [1, -1]), [total_max_count, 1])
selected = tf.linalg.norm(center_xy - ref_xy, axis=1) < 0.3
return pred_x, pred_y, pred_conf, selected
def build_targets(self, pred_x, pred_y, target, bbox_mask, grid_x, grid_y):
nB = pred_x.shape[0]
nH = pred_x.shape[2]
nW = pred_x.shape[3]
nAnchors = nH * nW
conf_mask = tf.ones([nB, nH, nW, self.nV])
targets = tf.reshape(target, [-1, 2*self.nV + 1])
targets = targets[:,1:2*self.nV + 1]
# print(targets)
target_x = targets[:, ::2]
target_y = targets[:, 1::2]
target_x = tf.expand_dims(target_x, axis=2)
target_y = tf.expand_dims(target_y, axis=2)
pred_x = tf.reshape(pred_x, [-1, self.nV, nAnchors])
pred_y = tf.reshape(pred_y, [-1, self.nV, nAnchors])
target_x = tf.tile(target_x, [1,1,nAnchors])
target_y = tf.tile(target_y, [1,1,nAnchors])
cur_confs = self.corner_confidences9(pred_x, target_x, pred_y, target_y)
cur_confs = tf.reshape(cur_confs, [nB, nH, nW, self.nV])
bbox_masks = tf.expand_dims(bbox_mask, axis=3)
bbox_masks = tf.tile(bbox_masks, [1,1,1, self.nV])
conf_noobj_mask = conf_mask * self.noobject_scale * tf.cast(cur_confs <= self.thresh, tf.float32) *\
tf.cast(tf.logical_not(tf.cast(bbox_masks, tf.bool)), tf.float32)
#removing the noobj mask, not sure if it will improve the results
conf_mask = conf_mask * bbox_masks * self.object_scale + conf_noobj_mask
cur_confs = cur_confs * bbox_masks
target_x = tf.reshape(target_x, [nB, self.nV, nW, nH])
target_y = tf.reshape(target_y, [nB, self.nV, nW, nH])
targetx = target_x * tf.cast(nW, tf.float32) - grid_x
targety = target_y * tf.cast(nH, tf.float32) - grid_y
nCorrect = tf.count_nonzero(cur_confs > 0.5)
return nCorrect, bbox_masks, conf_mask, cur_confs, targetx, targety
def corner_confidences9(self, pred_x, target_x, pred_y, target_y, sharpness=6):
distx = pred_x - target_x
disty = pred_y - target_y
# Convert to [b, 169, 9]
distx = tf.transpose(distx , [0, 2, 1])
disty = tf.transpose(disty, [0, 2, 1])
distx = tf.square(distx)
disty = tf.square(disty)
dist = distx + disty
# print(dist)
conf = tf.exp(sharpness * -1.0 * dist)
# print(conf)
return conf