-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathast-s.py
158 lines (133 loc) · 4.19 KB
/
ast-s.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# -*- coding: utf-8 -*-
"""
[Martinez-Gil2024] Augmenting the Interpretability of AST-Based Tree Kernels for Code Similarity Tasks
@author: Jorge Martinez-Gil
"""
import os
import ast
import itertools
from sklearn.svm import SVC
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.feature_extraction.text import CountVectorizer
import numpy as np
import matplotlib.pyplot as plt
# Define the classical sorting algorithms
sorting_algorithms = {
"Bubble_Sort": """
def bubble_sort(arr):
n = len(arr)
for i in range(n):
for j in range(0, n-i-1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[j]
return arr
""",
"Selection_Sort": """
def selection_sort(arr):
for i in range(len(arr)):
min_idx = i
for j in range(i+1, len(arr)):
if arr[j] < arr[min_idx]:
min_idx = j
arr[i], arr[min_idx] = arr[min_idx], arr[i]
return arr
""",
"Insertion_Sort": """
def insertion_sort(arr):
for i in range(1, len(arr)):
key = arr[i]
j = i-1
while j >=0 and key < arr[j]:
arr[j + 1] = arr[j]
j -= 1
arr[j + 1] = key
return arr
""",
"Merge_Sort": """
def merge_sort(arr):
if len(arr) > 1:
mid = len(arr)//2
L = arr[:mid]
R = arr[mid:]
merge_sort(L)
merge_sort(R)
i = j = k = 0
while i < len(L) and j < len(R):
if L[i] < R[j]:
arr[k] = L[i]
i += 1
else:
arr[k] = R[j]
j += 1
k += 1
while i < len(L):
arr[k] = L[i]
i += 1
k += 1
while j < len(R):
arr[k] = R[j]
j += 1
k += 1
return arr
""",
"Quick_Sort": """
def partition(arr, low, high):
i = (low-1)
pivot = arr[high]
for j in range(low, high):
if arr[j] <= pivot:
i = i+1
arr[i], arr[j] = arr[j], arr[i]
arr[i+1], arr[high] = arr[high], arr[i+1]
return (i+1)
def quick_sort(arr, low, high):
if low < high:
pi = partition(arr, low, high)
quick_sort(arr, low, pi-1)
quick_sort(arr, pi+1, high)
return arr
"""
}
# Function to extract tree structure features
def extract_ast_features(code):
"""
Converts Python code into an AST and extracts n-gram-based features.
"""
try:
tree = ast.parse(code)
except SyntaxError as e:
print(f"Error parsing code: {e}")
return ""
# Extract n-gram-like features from AST node types
node_types = [type(node).__name__ for node in ast.walk(tree)]
return " ".join(node_types)
# Extract AST features for all sorting algorithms
algorithm_names = list(sorting_algorithms.keys())
algorithm_codes = list(sorting_algorithms.values())
ast_features = [extract_ast_features(code) for code in algorithm_codes]
# Use a vectorizer to compute kernel similarity
vectorizer = CountVectorizer()
ast_feature_matrix = vectorizer.fit_transform(ast_features)
# Directory to save images
output_dir = "ast_tree_kernel_visualizations"
os.makedirs(output_dir, exist_ok=True)
# Generate all possible pairs of sorting algorithms
algorithm_pairs = list(itertools.combinations(range(len(algorithm_names)), 2))
# Loop over each pair and compute cosine similarity using AST features
for idx1, idx2 in algorithm_pairs:
algo1_name = algorithm_names[idx1]
algo2_name = algorithm_names[idx2]
# Compute cosine similarity between the two AST feature vectors
similarity = cosine_similarity(ast_feature_matrix[idx1], ast_feature_matrix[idx2])[0, 0]
# Plotting similarity
plt.figure(figsize=(6, 6), dpi=150)
plt.title(f"AST-Based Similarity: {algo1_name} vs {algo2_name}")
plt.bar(["Similarity"], [similarity], color='green')
plt.ylim(0, 1)
plt.ylabel("AST-Based Similarity")
plt.tight_layout()
# Save the figure as a high-quality PNG file
output_file = os.path.join(output_dir, f"{algo1_name}_vs_{algo2_name}_ast_similarity.png")
plt.savefig(output_file, format='png', dpi=300)
plt.close()
print("All AST-based similarity visualizations have been generated.")