-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotter.py
38 lines (30 loc) · 816 Bytes
/
plotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import data
import random
import signalnet
import matplotlib.pyplot as plt
import numpy as np
def flatten(list):
result = []
for item in list:
for value in item:
result.append(value)
return result
symbols = data.readTrainingSet('./training-set.txt')
trainingData = data.downloadTrainingData('GPK')
processedData = data.processTrainingData(trainingData)
sn = signalnet.SignalNet()
sn.loadNetwork('./saved/gen1650.xml')
buy = []
sell = []
for day in range(len(processedData)):
inputData = processedData[day]
outputs = (sn.network.activate(inputData))
buy.append(outputs)
opens = []
for day in trainingData[data.BBANDS_TIME_PERIOD:]:
opens.append(day[0])
fig, axes = plt.subplots(nrows=2)
axes[0].plot(opens)
axes[1].plot(buy, color='g')
plt.grid(True)
plt.show()