-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathSmallBlurryImage.cc
270 lines (226 loc) · 7.48 KB
/
SmallBlurryImage.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// Copyright 2008 Isis Innovation Limited
#include "SmallBlurryImage.h"
#include <cvd/utility.h>
#include <cvd/convolution.h>
#include <cvd/vision.h>
#include <TooN/se2.h>
#include <TooN/Cholesky.h>
#include <TooN/wls.h>
namespace PTAMM {
using namespace CVD;
using namespace std;
ImageRef SmallBlurryImage::mirSize(-1,-1);
SmallBlurryImage::SmallBlurryImage(const KeyFrame &kf, double dBlur)
{
mbMadeJacs = false;
MakeFromKF(kf, dBlur);
}
SmallBlurryImage::SmallBlurryImage()
{
mbMadeJacs = false;
}
// Make a SmallBlurryImage from a KeyFrame This fills in the mimSmall
// image (Which is just a small un-blurred version of the KF) and
// mimTemplate (which is a floating-point, zero-mean blurred version
// of the above)
void SmallBlurryImage::MakeFromKF(const KeyFrame &kf, double dBlur)
{
if(mirSize[0] == -1)
mirSize = kf.aLevels[3].im.size() / 2;
mbMadeJacs = false;
mimSmall.resize(mirSize);
mimTemplate.resize(mirSize);
mbMadeJacs = false;
halfSample(kf.aLevels[3].im, mimSmall);
ImageRef ir;
unsigned int nSum = 0;
do {
nSum += mimSmall[ir];
}
while(ir.next(mirSize));
float fMean = ((float) nSum) / mirSize.area();
ir.home();
do {
mimTemplate[ir] = mimSmall[ir] - fMean;
}
while(ir.next(mirSize));
convolveGaussian(mimTemplate, dBlur);
}
// Make the jacobians (actually, no more than a gradient image)
// of the blurred template
void SmallBlurryImage::MakeJacs()
{
mimImageJacs.resize(mirSize);
// Fill in the gradient image
ImageRef ir;
do
{
Vector<2> &v2Grad = mimImageJacs[ir];
if(mimTemplate.in_image_with_border(ir,1))
{
v2Grad[0] = mimTemplate[ir + ImageRef(1,0)] - mimTemplate[ir - ImageRef(1,0)];
v2Grad[1] = mimTemplate[ir + ImageRef(0,1)] - mimTemplate[ir - ImageRef(0,1)];
// N.b. missing 0.5 factor in above, this will be added later.
}
else
v2Grad = Zeros;
}
while(ir.next(mirSize));
mbMadeJacs = true;
};
// Calculate the zero-mean SSD between one image and the next.
// Since both are zero mean already, just calculate the SSD...
double SmallBlurryImage::ZMSSD(SmallBlurryImage &other)
{
double dSSD = 0.0;
ImageRef ir;
do
{
double dDiff = mimTemplate[ir] - other.mimTemplate[ir];
dSSD += dDiff * dDiff;
}
while(ir.next(mirSize));
return dSSD;
}
// Find an SE2 which best aligns an SBI to a target
// Do this by ESM-tracking a la Benhimane & Malis
pair<SE2<>,double> SmallBlurryImage::IteratePosRelToTarget(SmallBlurryImage &other, int nIterations)
{
SE2<> se2CtoC;
SE2<> se2WfromC;
ImageRef irCenter = mirSize / 2;
se2WfromC.get_translation() = vec(irCenter);
pair<SE2<>, double> result_pair;
if(!other.mbMadeJacs)
{
cerr << "You spanner, you didn't make the jacs for the target." << endl;
assert(other.mbMadeJacs);
};
double dMeanOffset = 0.0;
Vector<4> v4Accum;
Vector<10> v10Triangle;
Image<float> imWarped(mirSize);
double dFinalScore = 0.0;
for(int it = 0; it<nIterations; it++)
{
dFinalScore = 0.0;
v4Accum = Zeros;
v10Triangle = Zeros; // Holds the bottom-left triangle of JTJ
Vector<4> v4Jac;
v4Jac[3] = 1.0;
SE2<> se2XForm = se2WfromC * se2CtoC * se2WfromC.inverse();
// Make the warped current image template:
Vector<2> v2Zero = Zeros;
CVD::transform(mimTemplate, imWarped, se2XForm.get_rotation().get_matrix(), se2XForm.get_translation(), v2Zero, -9e20f);
// Now compare images, calc differences, and current image jacobian:
ImageRef ir;
do
{
if(!imWarped.in_image_with_border(ir,1))
continue;
float l,r,u,d,here;
l = imWarped[ir - ImageRef(1,0)];
r = imWarped[ir + ImageRef(1,0)];
u = imWarped[ir - ImageRef(0,1)];
d = imWarped[ir + ImageRef(0,1)];
here = imWarped[ir];
if(l + r + u + d + here < -9999.9) // This means it's out of the image; c.f. the -9e20f param to transform.
continue;
Vector<2> v2CurrentGrad;
v2CurrentGrad[0] = r - l; // Missing 0.5 factor
v2CurrentGrad[1] = d - u;
Vector<2> v2SumGrad = 0.25 * (v2CurrentGrad + other.mimImageJacs[ir]);
// Why 0.25? This is from missing 0.5 factors: One for
// the fact we average two gradients, the other from
// each gradient missing a 0.5 factor.
v4Jac[0] = v2SumGrad[0];
v4Jac[1] = v2SumGrad[1];
v4Jac[2] = -(ir.y - irCenter.y) * v2SumGrad[0] + (ir.x - irCenter.x) * v2SumGrad[1];
// v4Jac[3] = 1.0;
double dDiff = imWarped[ir] - other.mimTemplate[ir] + dMeanOffset;
dFinalScore += dDiff * dDiff;
v4Accum += dDiff * v4Jac;
// Speedy fill of the LL triangle of JTJ:
double *p = &v10Triangle[0];
*p++ += v4Jac[0] * v4Jac[0];
*p++ += v4Jac[1] * v4Jac[0];
*p++ += v4Jac[1] * v4Jac[1];
*p++ += v4Jac[2] * v4Jac[0];
*p++ += v4Jac[2] * v4Jac[1];
*p++ += v4Jac[2] * v4Jac[2];
*p++ += v4Jac[0];
*p++ += v4Jac[1];
*p++ += v4Jac[2];
*p++ += 1.0;
}
while(ir.next(mirSize));
Vector<4> v4Update;
// Solve for JTJ-1JTv;
{
Matrix<4> m4;
int v=0;
for(int j=0; j<4; j++)
for(int i=0; i<=j; i++)
m4[j][i] = m4[i][j] = v10Triangle[v++];
Cholesky<4> chol(m4);
v4Update = chol.backsub(v4Accum);
}
SE2<> se2Update;
se2Update.get_translation() = -v4Update.slice<0,2>();
se2Update.get_rotation() = SO2<>::exp(-v4Update[2]);
se2CtoC = se2CtoC * se2Update;
dMeanOffset -= v4Update[3];
}
result_pair.first = se2CtoC;
result_pair.second = dFinalScore;
return result_pair;
}
// What is the 3D camera rotation (zero trans) SE3<> which causes an
// input image SO2 rotation?
SE3<> SmallBlurryImage::SE3fromSE2(SE2<> se2, ATANCamera camera)
{
// Do this by projecting two points, and then iterating the SE3<> (SO3
// actually) until convergence. It might seem stupid doing this so
// precisely when the whole SE2-finding is one big hack, but hey.
camera.SetImageSize(mirSize);
Vector<2> av2Turned[2]; // Our two warped points in pixels
av2Turned[0] = vec(mirSize / 2) + se2 * vec(ImageRef(5,0));
av2Turned[1] = vec(mirSize / 2) + se2 * vec(ImageRef(-5,0));
Vector<3> av3OrigPoints[2]; // 3D versions of these points.
av3OrigPoints[0] = unproject(camera.UnProject(vec(mirSize / 2) + vec(ImageRef(5,0))));
av3OrigPoints[1] = unproject(camera.UnProject(vec(mirSize / 2) + vec(ImageRef(-5,0))));
SO3<> so3;
for(int it = 0; it<3; it++)
{
WLS<3> wls; // lazy; no need for the 'W'
wls.add_prior(10.0);
for(int i=0; i<2; i++)
{
// Project into the image to find error
Vector<3> v3Cam = so3 * av3OrigPoints[i];
Vector<2> v2Implane = project(v3Cam);
Vector<2> v2Pixels = camera.Project(v2Implane);
Vector<2> v2Error = av2Turned[i] - v2Pixels;
Matrix<2> m2CamDerivs = camera.GetProjectionDerivs();
Matrix<2,3> m23Jacobian;
double dOneOverCameraZ = 1.0 / v3Cam[2];
for(int m=0; m<3; m++)
{
const Vector<3> v3Motion = SO3<>::generator_field(m, v3Cam);
Vector<2> v2CamFrameMotion;
v2CamFrameMotion[0] = (v3Motion[0] - v3Cam[0] * v3Motion[2] * dOneOverCameraZ) * dOneOverCameraZ;
v2CamFrameMotion[1] = (v3Motion[1] - v3Cam[1] * v3Motion[2] * dOneOverCameraZ) * dOneOverCameraZ;
m23Jacobian.T()[m] = m2CamDerivs * v2CamFrameMotion;
};
wls.add_mJ(v2Error[0], m23Jacobian[0], 1.0);
wls.add_mJ(v2Error[1], m23Jacobian[1], 1.0);
};
wls.compute();
Vector<3> v3Res = wls.get_mu();
so3 = SO3<>::exp(v3Res) * so3;
};
SE3<> se3Result;
se3Result.get_rotation() = so3;
return se3Result;
}
}