forked from WalterSimoncini/grounded-diffusers
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_grounding_multiclass.py
245 lines (187 loc) · 8.2 KB
/
train_grounding_multiclass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import json
import glob
import torch
import pickle
import argparse
import torchvision
import numpy as np
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
from PIL import Image
from datetime import datetime
from pytorch_lightning import seed_everything
from diffusers import StableDiffusionPipeline
from torch.utils.tensorboard import SummaryWriter
from seg_module import Segmodule
from utils.evaluation import evaluate_seg_model
from loss_fn import BCEDiceLoss, DiceLoss, BCELogCoshDiceLoss
from utils import (
plot_mask,
get_embeddings,
preprocess_mask,
get_default_device
)
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
parser = argparse.ArgumentParser(prog="grounding training")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--use-sd2", action="store_true")
parser.add_argument("--n-epochs", type=int, default=10)
parser.add_argument("--dropout", type=float, default=0)
parser.add_argument("--loss", type=str, default="log_cosh")
parser.add_argument("--run-name", type=str, default=None)
parser.add_argument("--checkpoints-dir", type=str, default="checkpoints")
parser.add_argument("--learning-rate", type=float, default=1e-5)
parser.add_argument("--visualize-examples", action="store_true")
parser.add_argument("--train-images-path", type=str, default="dataset-old/dataset/images/")
parser.add_argument("--train-samples-path", type=str, default="dataset-old/dataset/samples/")
parser.add_argument("--validation-samples-path", type=str, default="dataset-old/val_dataset/samples/")
args = parser.parse_args()
device = get_default_device()
model_name = "stabilityai/stable-diffusion-2" if args.use_sd2 else "runwayml/stable-diffusion-v1-5"
seed_everything(args.seed)
os.makedirs(args.checkpoints_dir, exist_ok=True)
# Load COCO and Pascal-VOC classes
coco_classes = open("mmdetection/demo/coco_80_class.txt").read().split("\n")
coco_classes = dict([(c, i) for i, c in enumerate(coco_classes)])
pascal_classes = open(f"VOC/class_split1.csv").read().split("\n")
pascal_classes = [c.split(",")[0] for c in pascal_classes]
train_classes, test_classes = pascal_classes[:15], pascal_classes[15:]
# Load the segmentation module
seg_module = Segmodule(
use_sd2=args.use_sd2,
output_image_dim=768 if args.use_sd2 else 512,
dropout_rate=args.dropout
).to(device)
# Load the stable diffusion pipeline
pipeline = StableDiffusionPipeline.from_pretrained(model_name).to(device)
pipeline_components = pipeline.components
# Setup tokenizer and the CLIP embedder
tokenizer = pipeline_components["tokenizer"]
embedder = pipeline_components["text_encoder"]
# Compute the token_id -> token text mapping
tokenizer_inverted_vocab = {
v: k for k, v in tokenizer.get_vocab().items()
}
# Start training
print(f"starting training")
# Create folders to store checkpoints, training data, etc.
current_time = datetime.now().strftime("%b%d_%H-%M-%S")
run_dir_prefix = "" if args.run_name is None else f"{args.run_name}-"
run_dir = os.path.join(args.checkpoints_dir, f"{run_dir_prefix}{current_time}")
run_logs_dir = os.path.join(run_dir, "logs")
training_dir = os.path.join(run_dir, "training")
os.makedirs(run_dir, exist_ok=True)
os.makedirs(training_dir, exist_ok=True)
# Save the training parameters
with open(os.path.join(run_dir, "train_args.json"), "w") as args_file:
args_file.write(json.dumps(vars(args)))
# Setup logger, optimizer and loss
torch_writer = SummaryWriter(log_dir=run_logs_dir)
loss_fn = {
"bce": nn.BCEWithLogitsLoss(),
"dice": DiceLoss(),
"bce_dice": BCEDiceLoss(),
"log_cosh": BCELogCoshDiceLoss()
}[args.loss]
optimizer = optim.Adam(params=seg_module.parameters(), lr=args.learning_rate)
best_val_miou, best_epoch = 0, 0
training_samples = glob.glob(args.train_samples_path + "*.pk")
val_samples = glob.glob(args.validation_samples_path + "*.pk")
total_steps = len(training_samples)
assert total_steps > 0, f"{args.train_samples_path} does not contain any data. make sure you added a trailing / to the path"
assert len(val_samples) > 0, f"{args.validation_samples_path} does not contain any data. make sure you added a trailing / to the path"
for epoch in range(args.n_epochs):
print(f"starting epoch {epoch}")
seg_module.train()
# Do a single pass over all the data sample
for step, file_path in enumerate(tqdm(training_samples)):
image_path = training_samples[step]
with open(file_path, "rb") as sample_file:
sample = pickle.load(sample_file)
# Unpack the sample data
labels = sample.labels
segmentations = sample.masks
unet_features = sample.unet_features
# Move the UNet features to cpu
for key in unet_features.keys():
unet_features[key] = [x.to(device) for x in unet_features[key]]
step_loss = 0
# FIXME: We could precompute these
prompt = " and a ".join(labels)
label_embeddings = get_embeddings(
tokenizer=tokenizer,
embedder=embedder,
device=device,
prompt=prompt,
labels=labels,
inverted_vocab=tokenizer_inverted_vocab
)
for label, segmentation in zip(labels, segmentations):
# Predict the mask using the fusion module
fusion_segmentation = seg_module(unet_features, label_embeddings[label])
fusion_segmentation_pred = torch.unsqueeze(
fusion_segmentation[0, 0, :, :], 0
).unsqueeze(0)
if step % 25 == 0 and args.visualize_examples:
# FIXME: We should move these to Tensorboard
# Save the fusion module mask every 25 steps
fusion_mask = preprocess_mask(mask=fusion_segmentation_pred)
torchvision.utils.save_image(
torch.from_numpy(fusion_mask),
os.path.join(training_dir, f"vis_sample_{epoch}_{step}_{label}_pred_seg.png"),
normalize=True,
scale_each=True,
)
# Also plot the mask over the image
filename = file_path.split("/")[-1].replace(".pk", ".png")
image = Image.open(os.path.join(args.train_images_path, filename))
masked_image = Image.fromarray(plot_mask(np.array(image), fusion_mask))
masked_image.save(os.path.join(training_dir, f"vis_image_{epoch}_{step}_{label}_masked.png"))
segmentation = (
torch.from_numpy(segmentation).unsqueeze(0).unsqueeze(0).to(device)
).float()
# Calculate the loss and run one training step
# FIXME: Try averaging the loss here
step_loss += loss_fn(fusion_segmentation_pred, segmentation)
optimizer.zero_grad()
step_loss.backward()
optimizer.step()
torch_writer.add_scalar("train/loss", step_loss.item(), global_step=step)
if step % 500 == 0 and epoch > 0:
# Save a checkpoint every 500 steps
torch.save(
seg_module.state_dict(),
os.path.join(run_dir, f"checkpoint_{epoch}_{step}.pth")
)
seg_module.eval()
with torch.no_grad():
# Evaluate on the training and validation sets
print(f"evaluating the model for epoch {epoch}")
train_miou = evaluate_seg_model(
model=seg_module,
tokenizer=tokenizer,
embedder=embedder,
device=device,
tokenizer_inverted_vocab=tokenizer_inverted_vocab,
samples_paths=training_samples
)
print(f"training mIoU: {train_miou}")
val_miou = evaluate_seg_model(
model=seg_module,
tokenizer=tokenizer,
embedder=embedder,
device=device,
tokenizer_inverted_vocab=tokenizer_inverted_vocab,
samples_paths=val_samples
)
if val_miou > best_val_miou:
best_val_miou = val_miou
best_epoch = epoch
print(f"validation mIoU: {val_miou}")
print(f"epoch {best_epoch} has the best validation mIoU ({best_val_miou})")
torch_writer.add_scalar("train/miou", train_miou, epoch)
torch_writer.add_scalar("val/miou", val_miou, epoch)
# Make sure all metrics are saved
torch_writer.close()