forked from WalterSimoncini/grounded-diffusers
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate_multi_class.py
106 lines (80 loc) · 3.25 KB
/
evaluate_multi_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""
This script calculates the mean IoU for a grounding
module checkpoint for a given dataset.
"""
import os
import glob
import torch
import pickle
import argparse
import numpy as np
from tqdm import tqdm
from diffusers import StableDiffusionPipeline
from seg_module import Segmodule
from utils import preprocess_mask, get_embeddings, calculate_iou, get_default_device
parser = argparse.ArgumentParser(prog="grounding training")
parser.add_argument("--use-sd2", action="store_true")
parser.add_argument("--grounding-ckpt", type=str, default="checkpoints/mock-May25_20-45-58/checkpoint_3_0.pth")
parser.add_argument("--model-name", type=str, default="runwayml/stable-diffusion-v1-5")
parser.add_argument("--samples-path", type=str, default="val/samples/")
args = parser.parse_args()
device = get_default_device()
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# Load the segmentation module
seg_module = Segmodule(
use_sd2=args.use_sd2,
output_image_dim=768 if args.use_sd2 else 512
).to(device)
seg_module.load_state_dict(
torch.load(args.grounding_ckpt, map_location=device), strict=True
)
# Load the stable diffusion pipeline
pipeline = StableDiffusionPipeline.from_pretrained(args.model_name).to(device)
pipeline_components = pipeline.components
# Setup tokenizer and the CLIP embedder
tokenizer = pipeline_components["tokenizer"]
embedder = pipeline_components["text_encoder"]
# Compute the token_id -> token text mapping
tokenizer_inverted_vocab = {
v: k for k, v in tokenizer.get_vocab().items()
}
test_samples = glob.glob(args.samples_path + "*.pk")
total_steps = len(test_samples)
if total_steps == 0:
raise ValueError(
f"{args.samples_path} does not contain any data. "
"make sure you added a trailing / to the data_path"
)
seg_module.eval()
with torch.no_grad():
# Do a single pass over all the data sample
iou_scores = []
for step, file_path in enumerate(tqdm(test_samples)):
image_path = test_samples[step]
with open(file_path, "rb") as sample_file:
sample = pickle.load(sample_file)
# Unpack the sample data
labels = sample.labels
segmentations = sample.masks
unet_features = sample.unet_features
# Move the UNet features to cpu
for key in unet_features.keys():
unet_features[key] = [x.to(device) for x in unet_features[key]]
sample_iou = []
prompt = " and a ".join(labels)
label_embeddings = get_embeddings(
tokenizer=tokenizer,
embedder=embedder,
device=device,
prompt=prompt,
labels=labels,
inverted_vocab=tokenizer_inverted_vocab
)
for label, segmentation in zip(labels, segmentations):
fusion_segmentation = seg_module(unet_features, label_embeddings[label])
fusion_segmentation_pred = fusion_segmentation[0, 0, :, :]
fusion_mask = preprocess_mask(mask=fusion_segmentation_pred.unsqueeze(0))
sample_iou.append(calculate_iou(segmentation, fusion_mask))
iou_scores.append(np.array(sample_iou).mean())
mean_iou = np.array(iou_scores).mean()
print(f"the mean IoU across the dataset at {args.samples_path} using the checkpoint {args.grounding_ckpt} is {mean_iou}")