forked from Element-Research/rnn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSequencer.lua
196 lines (176 loc) · 6.53 KB
/
Sequencer.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
------------------------------------------------------------------------
--[[ Sequencer ]]--
-- Encapsulates a Module.
-- Input is a sequence (a table) of tensors.
-- Output is a sequence (a table) of tensors of the same length.
-- Applies the module to each element in the sequence.
-- Handles both recurrent modules and non-recurrent modules.
-- The sequences in a batch must have the same size.
-- But the sequence length of each batch can vary.
------------------------------------------------------------------------
assert(not nn.Sequencer, "update nnx package : luarocks install nnx")
local Sequencer, parent = torch.class('nn.Sequencer', 'nn.AbstractSequencer')
local _ = require 'moses'
function Sequencer:__init(module)
parent.__init(self)
if not torch.isTypeOf(module, 'nn.Module') then
error"Sequencer: expecting nn.Module instance at arg 1"
end
-- we can decorate the module with a Recursor to make it AbstractRecurrent
self.module = (not torch.isTypeOf(module, 'nn.AbstractRecurrent')) and nn.Recursor(module) or module
-- backprop through time (BPTT) will be done online (in reverse order of forward)
self.modules = {self.module}
self.output = {}
self.tableoutput = {}
self.tablegradInput = {}
-- table of buffers used for evaluation
self._output = {}
-- so that these buffers aren't serialized :
local _ = require 'moses'
self.dpnn_mediumEmpty = _.clone(self.dpnn_mediumEmpty)
table.insert(self.dpnn_mediumEmpty, '_output')
-- default is to forget previous inputs before each forward()
self._remember = 'neither'
end
function Sequencer:updateOutput(input)
local nStep
if torch.isTensor(input) then
nStep = input:size(1)
else
assert(torch.type(input) == 'table', "expecting input table")
nStep = #input
end
-- Note that the Sequencer hijacks the rho attribute of the rnn
self.module:maxBPTTstep(nStep)
if self.train ~= false then
-- TRAINING
if not (self._remember == 'train' or self._remember == 'both') then
self.module:forget()
end
self.tableoutput = {}
for step=1,nStep do
self.tableoutput[step] = self.module:updateOutput(input[step])
end
if torch.isTensor(input) then
self.output = torch.isTensor(self.output) and self.output or self.tableoutput[1].new()
self.output:resize(nStep, unpack(self.tableoutput[1]:size():totable()))
for step=1,nStep do
self.output[step]:copy(self.tableoutput[step])
end
else
self.output = self.tableoutput
end
else
-- EVALUATION
if not (self._remember == 'eval' or self._remember == 'both') then
self.module:forget()
end
-- during evaluation, recurrent modules reuse memory (i.e. outputs)
-- so we need to copy each output into our own table or tensor
if torch.isTensor(input) then
for step=1,nStep do
local output = self.module:updateOutput(input[step])
if step == 1 then
self.output = torch.isTensor(self.output) and self.output or output.new()
self.output:resize(nStep, unpack(output:size():totable()))
end
self.output[step]:copy(output)
end
else
for step=1,nStep do
self.tableoutput[step] = nn.rnn.recursiveCopy(
self.tableoutput[step] or table.remove(self._output, 1),
self.module:updateOutput(input[step])
)
end
-- remove extra output tensors (save for later)
for i=nStep+1,#self.tableoutput do
table.insert(self._output, self.tableoutput[i])
self.tableoutput[i] = nil
end
self.output = self.tableoutput
end
end
return self.output
end
function Sequencer:updateGradInput(input, gradOutput)
local nStep
if torch.isTensor(input) then
assert(torch.isTensor(gradOutput), "expecting gradOutput Tensor since input is a Tensor")
assert(gradOutput:size(1) == input:size(1), "gradOutput should have as many elements as input")
nStep = input:size(1)
else
assert(torch.type(gradOutput) == 'table', "expecting gradOutput table")
assert(#gradOutput == #input, "gradOutput should have as many elements as input")
nStep = #input
end
-- back-propagate through time
self.tablegradinput = {}
for step=nStep,1,-1 do
self.tablegradinput[step] = self.module:updateGradInput(input[step], gradOutput[step])
end
if torch.isTensor(input) then
self.gradInput = torch.isTensor(self.gradInput) and self.gradInput or self.tablegradinput[1].new()
self.gradInput:resize(nStep, unpack(self.tablegradinput[1]:size():totable()))
for step=1,nStep do
self.gradInput[step]:copy(self.tablegradinput[step])
end
else
self.gradInput = self.tablegradinput
end
return self.gradInput
end
function Sequencer:accGradParameters(input, gradOutput, scale)
local nStep
if torch.isTensor(input) then
assert(torch.isTensor(gradOutput), "expecting gradOutput Tensor since input is a Tensor")
assert(gradOutput:size(1) == input:size(1), "gradOutput should have as many elements as input")
nStep = input:size(1)
else
assert(torch.type(gradOutput) == 'table', "expecting gradOutput table")
assert(#gradOutput == #input, "gradOutput should have as many elements as input")
nStep = #input
end
-- back-propagate through time
for step=nStep,1,-1 do
self.module:accGradParameters(input[step], gradOutput[step], scale)
end
end
function Sequencer:accUpdateGradParameters(inputTable, gradOutputTable, lr)
error"Not Implemented"
end
function Sequencer:training()
if self.train == false then
-- forget at the start of each training
self:forget()
-- empty temporary output table
self._output = {}
-- empty output table (tensor mem was managed by seq)
self.tableoutput = nil
end
parent.training(self)
end
function Sequencer:evaluate()
if self.train ~= false then
-- forget at the start of each evaluation
self:forget()
-- empty output table (tensor mem was managed by rnn)
self.tableoutput = {}
end
parent.evaluate(self)
assert(self.train == false)
end
function Sequencer:clearState()
if torch.isTensor(self.output) then
self.output:set()
self.gradInput:set()
else
self.output = {}
self.gradInput = {}
end
self._output = {}
self.tableoutput = {}
self.tablegradinput = {}
self.module:clearState()
end
Sequencer.__tostring__ = nn.Decorator.__tostring__