forked from Element-Research/rnn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMufuru.lua
140 lines (122 loc) · 4.38 KB
/
Mufuru.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
------------------------------------------------------------------------
--[[ MuFuRu - Multi-Function Recurrent Unit ]]--
-- Author: Jonathan Uesato
-- License: LICENSE.2nd.txt
-- Ref. A.: http://arxiv.org/pdf/1606.03002v1.pdf
------------------------------------------------------------------------
local MuFuRu, parent = torch.class('nn.MuFuRu', 'nn.GRU')
local SqrtDiffLayer = nn.Sequential()
:add(nn.CSubTable())
:add(nn.Abs())
:add(nn.Sqrt())
:add(nn.MulConstant(0.25))
local MaxLayer = nn.Sequential()
:add(nn.MapTable(nn.Unsqueeze(1)))
:add(nn.JoinTable(1))
:add(nn.Max(1))
local MinLayer = nn.Sequential()
:add(nn.MapTable(nn.Unsqueeze(1)))
:add(nn.JoinTable(1))
:add(nn.Min(1))
-- all operations take a table {oldState, newState} and return newState
_operations = {
max = MaxLayer,
keep = nn.SelectTable(1),
replace = nn.SelectTable(2),
mul = nn.CMulTable(),
min = MinLayer,
diff = nn.CSubTable(),
forget = nn.Sequential():add(nn.SelectTable(1)):add(nn.MulConstant(0.0)),
sqrt_diff = SqrtDiffLayer
}
function MuFuRu:__init(inputSize, outputSize, ops, rho)
-- Use all ops by default. To replicate GRU, use keep and replace only.
self.ops = ops or {'keep', 'replace', 'mul', 'diff', 'forget', 'sqrt_diff', 'max', 'min'}
self.num_ops = #self.ops
self.operations = {}
for i=1,self.num_ops do
self.operations[i] = _operations[self.ops[i]]
end
self.inputSize = inputSize
self.outputSize = outputSize
parent.__init(self, inputSize, outputSize, rho or 9999)
end
-------------------------- factory methods -----------------------------
function MuFuRu:buildModel()
-- input : {input, prevOutput}
-- output : output
local nonBatchDim = 2
-- resetGate takes {input, prevOutput} to resetGate
local resetGate = nn.Sequential()
:add(nn.ParallelTable()
:add(nn.Linear(self.inputSize, self.outputSize), false)
:add(nn.Linear(self.outputSize, self.outputSize))
)
:add(nn.CAddTable())
:add(nn.Sigmoid())
-- Feature takes {input, prevOutput, reset} to feature
local featureVec = nn.Sequential()
:add(nn.ConcatTable()
:add(nn.SelectTable(1))
:add(nn.Sequential()
:add(nn.NarrowTable(2,2))
:add(nn.CMulTable())
)
)
:add(nn.JoinTable(nonBatchDim)) -- [x_t, r dot s_t-1]
:add(nn.Linear(self.inputSize + self.outputSize, self.outputSize))
:add(nn.Sigmoid())
-- opWeights takes {input, prevOutput, reset} to opWeights.
-- Note that reset is not used
local opWeights = nn.Sequential()
:add(nn.NarrowTable(1,2))
:add(nn.JoinTable(nonBatchDim)) -- k_t
:add(nn.Linear(self.inputSize + self.outputSize, self.num_ops * self.outputSize)) --p^_t
:add(nn.View(self.num_ops, self.outputSize):setNumInputDims(1))
:add(nn.Transpose({1,2}))
:add(nn.SoftMax()) --p_t
-- all_ops takes {oldState, newState} to {newState1, newState2, ...newStateN}
local all_ops = nn.ConcatTable()
for i=1,self.num_ops do
-- an operation is any layer taking {prevHidden, featureVec} to newState
all_ops:add(self.operations[i])
end
local all_op_activations = nn.Sequential()
:add(nn.NarrowTable(1,2))
:add(all_ops)
:add(nn.MapTable(nn.Unsqueeze(1)))
:add(nn.JoinTable(1,3))
-- combine_ops takes {prevHidden, featureVec, opWeights} to nextHidden
local combine_ops = nn.Sequential()
:add(nn.ConcatTable()
:add(all_op_activations)
:add(nn.SelectTable(3))
)
:add(nn.CMulTable())
:add(nn.Sum(1,3))
local cell = nn.Sequential()
:add(nn.ConcatTable()
:add(nn.SelectTable(1))
:add(nn.SelectTable(2))
:add(resetGate)
) -- {input,prevOutput,reset}
:add(nn.ConcatTable()
:add(nn.SelectTable(2))
:add(featureVec)
:add(opWeights)
) -- {prevOutput, v_t, opWeights}
:add(combine_ops)
return cell
end
-- Factory methods are inherited from GRU
function MuFuRu:__tostring__()
local op_str = '{ '
for i=1,self.num_ops do
op_str = op_str .. self.ops[i] .. ' '
end
op_str = op_str .. '}'
return (string.format('%s(%d -> %d) ', torch.type(self), self.inputSize, self.outputSize)) .. op_str
end
function MuFuRu:migrate(params)
error"Migrate not supported for MuFuRu"
end