-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest.py
140 lines (112 loc) · 4.46 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import argparse
import torch
import torch.nn as nn
import sys
import numpy as np
import time
from torchprofile import profile_macs
# Append root directory to system path for imports
repo_path, _ = os.path.split(os.path.realpath(__file__))
repo_path, _ = os.path.split(repo_path)
sys.path.append(repo_path)
from utils.seed import seed_all
from utils.config import CFG
from utils.dataset import get_dataset
from utils.model import get_model
from utils.logger import get_logger
from utils.io_tools import dict_to, _create_directory
import utils.checkpoint as checkpoint
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
def parse_args():
parser = argparse.ArgumentParser(description='DSC validating')
parser.add_argument(
'--weights',
dest='weights_file',
default='',
metavar='FILE',
help='path to folder where model.pth file is',
type=str,
)
parser.add_argument(
'--dset_root',
dest='dataset_root',
default=None,
metavar='DATASET',
help='path to dataset root folder',
type=str,
)
parser.add_argument(
'--out_path',
dest='output_path',
default='',
metavar='OUT_PATH',
help='path to folder where predictions will be saved',
type=str,
)
args = parser.parse_args()
return args
def test(model, dset, _cfg, logger, out_path_root):
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# Moving optimizer and model to used device
model = model.to(device=device)
logger.info('=> Passing the network on the test set...')
model.eval()
inv_remap_lut = dset.dataset.get_inv_remap_lut()
time_list = []
with torch.no_grad():
for t, (data, indices) in enumerate(dset):
data = dict_to(data, device)
# torch.cuda.synchronize()
start_time = time.time()
scores = model(data) # [b,20,256,256,32]
# torch.cuda.synchronize()
time_list.append(time.time() - start_time)
for key in scores:
scores[key] = torch.argmax(scores[key], dim=1).data.cpu().numpy()
curr_index = 0
for score in scores['pred_semantic_1_1']:
score = score.reshape(-1).astype(np.uint16)
score = inv_remap_lut[score].astype(np.uint16)
input_filename = dset.dataset.filepaths['occupancy'][indices[curr_index]]
filename, extension = os.path.splitext(os.path.basename(input_filename))
sequence = os.path.dirname(input_filename).split('/')[-2]
out_filename = os.path.join(out_path_root, 'sequences', sequence, 'predictions', filename + '.label')
_create_directory(os.path.dirname(out_filename))
score.tofile(out_filename)
logger.info('=> Sequence {} - File {} saved'.format(sequence, os.path.basename(out_filename)))
curr_index += 1
return time_list
def main():
# https://github.com/pytorch/pytorch/issues/27588
torch.backends.cudnn.enabled = True
seed_all(0)
args = parse_args()
weights_f = args.weights_file
dataset_f = args.dataset_root
out_path_root = args.output_path
assert os.path.isfile(weights_f), '=> No file found at {}'
checkpoint_path = torch.load(weights_f)
config_dict = checkpoint_path.pop('config_dict')
config_dict['DATASET']['DATA_ROOT'] = dataset_f
# Read train configuration file
_cfg = CFG()
_cfg.from_dict(config_dict)
# Setting the logger to print statements and also save them into logs file
logger = get_logger(out_path_root, 'logs_val.log')
logger.info('============ Test weights: "%s" ============\n' % weights_f)
dataset = get_dataset(_cfg._dict)['test']
logger.info('=> Loading network architecture...')
model = get_model(_cfg._dict, phase='test')
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model = model.module
logger.info('=> Loading network weights...')
model = checkpoint.load_model(model, weights_f, logger)
logger.info(f'=> Model Parameters: {sum(p.numel() for p in model.parameters())/1000000.0} M')
time_list = test(model, dataset, _cfg, logger, out_path_root)
logger.info('=> ============ Network Test Done ============')
logger.info('Inference time per frame is %.4f seconds\n' % (np.sum(time_list) / len(dataset.dataset)))
exit()
if __name__ == '__main__':
main()