forked from facebookresearch/AugLy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransforms.py
740 lines (599 loc) · 24.7 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
import random
from typing import Any, Callable, Dict, List, Optional, Union
import augly.text.functional as F
from augly.utils import (
FUN_FONTS_PATH,
MISSPELLING_DICTIONARY_PATH,
UNICODE_MAPPING_PATH,
)
"""
Base Classes for Transforms
"""
class BaseTransform(object):
def __init__(self, p: float = 1.0):
"""
@param p: the probability of the transform being applied; default value is 1.0
"""
assert 0 <= p <= 1.0, "p must be a value in the range [0, 1]"
self.p = p
def __call__(
self,
texts: Union[str, List[str]],
force: bool = False,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
@param texts: a string or a list of text documents to be augmented
@param force: if set to True, the transform will be applied. Otherwise,
application is determined by the probability set
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
assert isinstance(
texts, (str, list)
), "Expected types List[str] or str for variable 'texts'"
assert isinstance(force, bool), "Expected type bool for variable 'force'"
if not force and random.random() > self.p:
return texts if isinstance(texts, list) else [texts]
return self.apply_transform(texts, metadata)
def apply_transform(
self,
texts: Union[str, List[str]],
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
This function is to be implemented in the child classes.
From this function, call the augmentation function with the
parameters specified
"""
raise NotImplementedError()
"""
Non-Random Transforms
These classes below are essentially class-based versions of the augmentation
functions previously defined. These classes were developed such that they can
be used with Composition operators (such as `torchvision`'s) and to support
use cases where a specific transform with specific attributes needs to be
applied multiple times.
Example:
>>> texts = ["hello world", "bye planet"]
>>> tsfm = InsertPunctuationChars(granularity="all", p=0.5)
>>> aug_texts = tsfm(texts)
"""
class ApplyLambda(BaseTransform):
def __init__(
self,
aug_function: Callable[..., List[str]] = lambda x: x,
p: float = 1.0,
**kwargs,
):
"""
@param aug_function: the augmentation function to be applied onto the text
(should expect a list of text documents as input and return a list of
text documents)
@param p: the probability of the transform being applied; default value is 1.0
@param **kwargs: the input attributes to be passed into the augmentation
function to be applied
"""
super().__init__(p)
self.aug_function = aug_function
self.kwargs = kwargs
def apply_transform(
self,
texts: Union[str, List[str]],
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Apply a user-defined lambda on a list of text documents
@param texts: a string or a list of text documents to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
return F.apply_lambda(
texts, self.aug_function, **self.kwargs, metadata=metadata
)
class GetBaseline(BaseTransform):
def apply_transform(
self,
texts: Union[str, List[str]],
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Generates a baseline by tokenizing and detokenizing the text
@param texts: a string or a list of text documents to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
return F.get_baseline(texts, metadata=metadata)
class InsertPunctuationChars(BaseTransform):
def __init__(
self,
granularity: str = "all",
cadence: float = 1.0,
vary_chars: bool = False,
p: float = 1.0,
):
"""
@param granularity: 'all' or 'word' -- if 'word', a new char is picked and
the cadence resets for each word in the text
@param cadence: how frequent (i.e. between this many characters) to insert
a punctuation character. Must be at least 1.0. Non-integer values are used
as an 'average' cadence
@param vary_chars: if true, picks a different punctuation char each time one is
used instead of just one per word/text
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.granularity = granularity
self.cadence = cadence
self.vary_chars = vary_chars
def apply_transform(
self,
texts: Union[str, List[str]],
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Inserts punctuation characters in each input text
@param texts: a string or a list of text documents to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
return F.insert_punctuation_chars(
texts,
granularity=self.granularity,
cadence=self.cadence,
vary_chars=self.vary_chars,
metadata=metadata,
)
class InsertZeroWidthChars(BaseTransform):
def __init__(
self,
granularity: str = "all",
cadence: float = 1.0,
vary_chars: bool = False,
p: float = 1.0,
):
"""
@param granularity: 'all' or 'word' -- if 'word', a new char is picked
and the cadence resets for each word in the text
@param cadence: how frequent (i.e. between this many characters) to insert
a zero-width character. Must be at least 1.0. Non-integer values are used
as an 'average' cadence
@param vary_chars: If true, picks a different zero-width char each time one is
used instead of just one per word/text
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.granularity = granularity
self.cadence = cadence
self.vary_chars = vary_chars
def apply_transform(
self,
texts: Union[str, List[str]],
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Inserts zero-width characters in each input text
@param texts: a string or a list of text documents to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
return F.insert_zero_width_chars(
texts,
granularity=self.granularity,
cadence=self.cadence,
vary_chars=self.vary_chars,
metadata=metadata,
)
class ReplaceBidirectional(BaseTransform):
def __init__(
self,
granularity: str = "all",
split_word: bool = False,
p: float = 1.0,
):
"""
@param granularity: the level at which the font is applied; this must be
either 'word' or 'all'
@param split_word: if true and granularity is 'word', reverses only the
second half of each word
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.granularity = granularity
self.split_word = split_word
def apply_transform(
self,
texts: Union[str, List[str]],
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Reverses each word (or part of the word) in each input text and uses
bidirectional marks to render the text in its original order. It reverses
each word separately which keeps the word order even when a line wraps
@param texts: a string or a list of text documents to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
return F.replace_bidirectional(
texts,
granularity=self.granularity,
split_word=self.split_word,
metadata=metadata,
)
class ReplaceFunFonts(BaseTransform):
def __init__(
self,
aug_p: float = 0.3,
aug_min: int = 1,
aug_max: int = 10000,
granularity: str = "all",
vary_fonts: bool = False,
fonts_path: str = FUN_FONTS_PATH,
n: int = 1,
priority_words: Optional[List[str]] = None,
p: float = 1.0,
):
"""
@param aug_p: probability of words to be augmented
@param aug_min: minimum # of words to be augmented
@param aug_max: maximum # of words to be augmented
@param granularity: the level at which the font is applied; this
must be be either word, char, or all
@param vary_fonts: whether or not to switch font in each replacement
@param fonts_path: iopath uri where the fonts are stored
@param n: number of augmentations to be performed for each text
@param priority_words: list of target words that the augmenter should
prioritize to augment first
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.aug_p = aug_p
self.aug_min = aug_min
self.aug_max = aug_max
self.granularity = granularity
self.vary_fonts = vary_fonts
self.fonts_path = fonts_path
self.n = n
self.priority_words = priority_words
def apply_transform(
self,
texts: Union[str, List[str]],
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Replaces words or characters depending on the granularity with fun fonts applied
@param texts: a string or a list of text documents to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
return F.replace_fun_fonts(
texts,
aug_p=self.aug_p,
aug_min=self.aug_min,
aug_max=self.aug_max,
granularity=self.granularity,
vary_fonts=self.vary_fonts,
fonts_path=self.fonts_path,
n=self.n,
priority_words=self.priority_words,
metadata=metadata,
)
class ReplaceSimilarChars(BaseTransform):
def __init__(
self,
aug_char_p: float = 0.3,
aug_word_p: float = 0.3,
min_char: int = 2,
aug_char_min: int = 1,
aug_char_max: int = 1000,
aug_word_min: int = 1,
aug_word_max: int = 1000,
n: int = 1,
mapping_path: Optional[str] = None,
priority_words: Optional[List[str]] = None,
p: float = 1.0,
):
"""
@param aug_char_p: probability of letters to be replaced in each word
@param aug_word_p: probability of words to be augmented
@param min_char: minimum # of letters in a word for a valid augmentation
@param aug_char_min: minimum # of letters to be replaced in each word
@param aug_char_max: maximum # of letters to be replaced in each word
@param aug_word_min: minimum # of words to be augmented
@param aug_word_max: maximum # of words to be augmented
@param n: number of augmentations to be performed for each text
@param mapping_path: iopath uri where the mapping is stored
@param priority_words: list of target words that the augmenter should
prioritize to augment first
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.aug_char_p = aug_char_p
self.aug_word_p = aug_word_p
self.min_char = min_char
self.aug_char_min = aug_char_min
self.aug_char_max = aug_char_max
self.aug_word_min = aug_word_min
self.aug_word_max = aug_word_max
self.n = n
self.mapping_path = mapping_path
self.priority_words = priority_words
def apply_transform(
self,
texts: Union[str, List[str]],
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Replaces letters in each text with similar characters
@param texts: a string or a list of text documents to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
return F.replace_similar_chars(
texts,
aug_char_p=self.aug_char_p,
aug_word_p=self.aug_word_p,
min_char=self.min_char,
aug_char_min=self.aug_char_min,
aug_char_max=self.aug_char_max,
aug_word_min=self.aug_word_min,
aug_word_max=self.aug_word_max,
n=self.n,
mapping_path=self.mapping_path,
priority_words=self.priority_words,
metadata=metadata,
)
class ReplaceSimilarUnicodeChars(BaseTransform):
def __init__(
self,
aug_char_p: float = 0.3,
aug_word_p: float = 0.3,
min_char: int = 2,
aug_char_min: int = 1,
aug_char_max: int = 1000,
aug_word_min: int = 1,
aug_word_max: int = 1000,
n: int = 1,
mapping_path: str = UNICODE_MAPPING_PATH,
priority_words: Optional[List[str]] = None,
p: float = 1.0,
):
"""
@param aug_char_p: probability of letters to be replaced in each word
@param aug_word_p: probability of words to be augmented
@param min_char: minimum # of letters in a word for a valid augmentation
@param aug_char_min: minimum # of letters to be replaced in each word
@param aug_char_max: maximum # of letters to be replaced in each word
@param aug_word_min: minimum # of words to be augmented
@param aug_word_max: maximum # of words to be augmented
@param n: number of augmentations to be performed for each text
@param mapping_path: iopath uri where the mapping is stored
@param priority_words: list of target words that the augmenter should
prioritize to augment first
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.aug_char_p = aug_char_p
self.aug_word_p = aug_word_p
self.min_char = min_char
self.aug_char_min = aug_char_min
self.aug_char_max = aug_char_max
self.aug_word_min = aug_word_min
self.aug_word_max = aug_word_max
self.n = n
self.mapping_path = mapping_path
self.priority_words = priority_words
def apply_transform(
self,
texts: Union[str, List[str]],
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Replaces letters in each text with similar unicodes
@param texts: a string or a list of text documents to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
return F.replace_similar_unicode_chars(
texts,
aug_char_p=self.aug_char_p,
aug_word_p=self.aug_word_p,
min_char=self.min_char,
aug_char_min=self.aug_char_min,
aug_char_max=self.aug_char_max,
aug_word_min=self.aug_word_min,
aug_word_max=self.aug_word_max,
n=self.n,
mapping_path=self.mapping_path,
priority_words=self.priority_words,
metadata=metadata,
)
class ReplaceUpsideDown(BaseTransform):
def __init__(
self,
aug_p: float = 0.3,
aug_min: int = 1,
aug_max: int = 1000,
granularity: str = "all",
n: int = 1,
p: float = 1.0,
):
"""
@param aug_p: probability of words to be augmented
@param aug_min: minimum # of words to be augmented
@param aug_max: maximum # of words to be augmented
@param granularity: the level at which the font is applied;
this must be be either word, char, or all
@param n: number of augmentations to be performed for each text
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.aug_p = aug_p
self.aug_min = aug_min
self.aug_max = aug_max
self.granularity = granularity
self.n = n
def apply_transform(
self,
texts: Union[str, List[str]],
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Flips words in the text upside down depending on the granularity
@param texts: a string or a list of text documents to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
return F.replace_upside_down(
texts,
aug_p=self.aug_p,
aug_min=self.aug_min,
aug_max=self.aug_max,
granularity=self.granularity,
n=self.n,
metadata=metadata,
)
class SimulateTypos(BaseTransform):
def __init__(
self,
aug_char_p: float = 0.3,
aug_word_p: float = 0.3,
min_char: int = 2,
aug_char_min: int = 1,
aug_char_max: int = 1,
aug_word_min: int = 1,
aug_word_max: int = 1000,
n: int = 1,
misspelling_dict_path: str = MISSPELLING_DICTIONARY_PATH,
priority_words: Optional[List[str]] = None,
p: float = 1.0,
):
"""
@param aug_char_p: probability of letters to be replaced in each word;
This is only applicable for keyboard distance and swapping
@param aug_word_p: probability of words to be augmented
@param min_char: minimum # of letters in a word for a valid augmentation;
This is only applicable for keyboard distance and swapping
@param aug_char_min: minimum # of letters to be replaced/swapped in each word;
This is only applicable for keyboard distance and swapping
@param aug_char_max: maximum # of letters to be replaced/swapped in each word;
This is only applicable for keyboard distance and swapping
@param aug_word_min: minimum # of words to be augmented
@param aug_word_max: maximum # of words to be augmented
@param n: number of augmentations to be performed for each text
@param misspelling_dict_path: iopath uri where the misspelling dictionary is stored
@param priority_words: list of target words that the augmenter should
prioritize to augment first
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.aug_char_p = aug_char_p
self.aug_word_p = aug_word_p
self.min_char = min_char
self.aug_char_min = aug_char_min
self.aug_char_max = aug_char_max
self.aug_word_min = aug_word_min
self.aug_word_max = aug_word_max
self.n = n
self.misspelling_dict_path = misspelling_dict_path
self.priority_words = priority_words
def apply_transform(
self,
texts: Union[str, List[str]],
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Simulates typos in each text using misspellings, keyboard distance, and swapping
@param texts: a string or a list of text documents to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
return F.simulate_typos(
texts,
aug_char_p=self.aug_char_p,
aug_word_p=self.aug_word_p,
min_char=self.min_char,
aug_char_min=self.aug_char_min,
aug_char_max=self.aug_char_max,
aug_word_min=self.aug_word_min,
aug_word_max=self.aug_word_max,
n=self.n,
misspelling_dict_path=self.misspelling_dict_path,
priority_words=self.priority_words,
metadata=metadata,
)
class SplitWords(BaseTransform):
def __init__(
self,
aug_word_p: float = 0.3,
min_char: int = 4,
aug_word_min: int = 1,
aug_word_max: int = 1000,
n: int = 1,
priority_words: Optional[List[str]] = None,
p: float = 1.0,
):
"""
@param aug_word_p: probability of words to be augmented
@param min_char: minimum # of characters in a word for a split
@param aug_word_min: minimum # of words to be augmented
@param aug_word_max: maximum # of words to be augmented
@param n: number of augmentations to be performed for each text
@param priority_words: list of target words that the augmenter should
prioritize to augment first
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.aug_word_p = aug_word_p
self.min_char = min_char
self.aug_word_min = aug_word_min
self.aug_word_max = aug_word_max
self.n = n
self.priority_words = priority_words
def apply_transform(
self,
texts: Union[str, List[str]],
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Splits words in the text into subwords
@param texts: a string or a list of text documents to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
return F.split_words(
texts,
aug_word_p=self.aug_word_p,
min_char=self.min_char,
aug_word_min=self.aug_word_min,
aug_word_max=self.aug_word_max,
n=self.n,
priority_words=self.priority_words,
metadata=metadata,
)