forked from facebookresearch/AugLy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctional.py
593 lines (443 loc) · 18.4 KB
/
functional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Union
import augly.text.augmenters as a
import augly.text.utils as txtutils
from augly.utils import (
FUN_FONTS_PATH,
MISSPELLING_DICTIONARY_PATH,
UNICODE_MAPPING_PATH,
)
def apply_lambda(
texts: Union[str, List[str]],
aug_function: Callable[..., List[str]] = lambda x: x,
metadata: Optional[List[Dict[str, Any]]] = None,
**kwargs,
) -> List[str]:
"""
Apply a user-defined lambda on a list of text documents
@param texts: a string or a list of text documents to be augmented
@param aug_function: the augmentation function to be applied onto the text
(should expect a list of text documents as input and return a list of
text documents)
@param **kwargs: the input attributes to be passed into the augmentation
function to be applied
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
assert callable(aug_function), (
repr(type(aug_function).__name__) + " object is not callable"
)
func_kwargs = deepcopy(locals())
if aug_function is not None:
try:
func_kwargs["aug_function"] = aug_function.__name__
except AttributeError:
func_kwargs["aug_function"] = type(aug_function).__name__
func_kwargs = txtutils.get_func_kwargs(metadata, func_kwargs)
aug_texts = aug_function(texts, **kwargs)
txtutils.get_metadata(
metadata=metadata,
function_name="apply_lambda",
aug_texts=aug_texts,
**func_kwargs,
)
return aug_texts
def get_baseline(
texts: Union[str, List[str]],
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Generates a baseline by tokenizing and detokenizing the text
@param texts: a string or a list of text documents to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
func_kwargs = txtutils.get_func_kwargs(metadata, locals())
baseline_aug = a.BaselineAugmenter()
aug_texts = baseline_aug.augment(texts, 1)
txtutils.get_metadata(
metadata=metadata,
function_name="get_baseline",
aug_texts=aug_texts,
**func_kwargs,
)
return aug_texts
def insert_punctuation_chars(
texts: Union[str, List[str]],
granularity: str = "all",
cadence: float = 1.0,
vary_chars: bool = False,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Inserts punctuation characters in each input text
@param texts: a string or a list of text documents to be augmented
@param granularity: 'all' or 'word' -- if 'word', a new char is picked and
the cadence resets for each word in the text
@param cadence: how frequent (i.e. between this many characters) to insert a
punctuation character. Must be at least 1.0. Non-integer values are used
as an 'average' cadence
@param vary_chars: if true, picks a different punctuation char each time one
is used instead of just one per word/text
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented texts
"""
func_kwargs = txtutils.get_func_kwargs(metadata, locals())
punctuation_aug = a.InsertionAugmenter(
"punctuation", granularity, cadence, vary_chars
)
aug_texts = punctuation_aug.augment(texts)
txtutils.get_metadata(
metadata=metadata,
function_name="insert_punctuation_chars",
aug_texts=aug_texts,
**func_kwargs,
)
return aug_texts
def insert_zero_width_chars(
texts: Union[str, List[str]],
granularity: str = "all",
cadence: float = 1.0,
vary_chars: bool = False,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Inserts zero-width characters in each input text
@param texts: a string or a list of text documents to be augmented
@param granularity: 'all' or 'word' -- if 'word', a new char is picked and
the cadence resets for each word in the text
@param cadence: how frequent (i.e. between this many characters) to insert
a zero-width character. Must be at least 1.0. Non-integer values are
used as an 'average' cadence
@param vary_chars: if true, picks a different zero-width char each time one
is used instead of just one per word/text
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented texts
"""
func_kwargs = txtutils.get_func_kwargs(metadata, locals())
zero_width_aug = a.InsertionAugmenter(
"zero_width", granularity, cadence, vary_chars
)
aug_texts = zero_width_aug.augment(texts)
txtutils.get_metadata(
metadata=metadata,
function_name="insert_zero_width_chars",
aug_texts=aug_texts,
**func_kwargs,
)
return aug_texts
def replace_bidirectional(
texts: Union[str, List[str]],
granularity: str = "all",
split_word: bool = False,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Reverses each word (or part of the word) in each input text and uses
bidirectional marks to render the text in its original order. It reverses
each word separately which keeps the word order even when a line wraps
@param texts: a string or a list of text documents to be augmented
@param granularity: the level at which the font is applied; this must be either
'word' or 'all'
@param split_word: if true and granularity is 'word', reverses only the second
half of each word
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented texts
"""
func_kwargs = txtutils.get_func_kwargs(metadata, locals())
bidirectional_aug = a.BidirectionalAugmenter(granularity, split_word)
aug_texts = bidirectional_aug.augment(texts)
txtutils.get_metadata(
metadata=metadata,
function_name="replace_bidirectional",
aug_texts=aug_texts,
**func_kwargs,
)
return aug_texts
def replace_fun_fonts(
texts: Union[str, List[str]],
aug_p: float = 0.3,
aug_min: int = 1,
aug_max: int = 10000,
granularity: str = "all",
vary_fonts: bool = False,
fonts_path: str = FUN_FONTS_PATH,
n: int = 1,
priority_words: Optional[List[str]] = None,
metadata: Optional[List[Dict[str, Any]]] = None,
):
"""
Replaces words or characters depending on the granularity with fun fonts applied
@param texts: a string or a list of text documents to be augmented
@param aug_p: probability of words to be augmented
@param aug_min: minimum # of words to be augmented
@param aug_max: maximum # of words to be augmented
@param granularity: the level at which the font is applied; this must be be
either word, char, or all
@param vary_fonts: whether or not to switch font in each replacement
@param fonts_path: iopath uri where the fonts are stored
@param n: number of augmentations to be performed for each text
@param priority_words: list of target words that the augmenter should
prioritize to augment first
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
func_kwargs = txtutils.get_func_kwargs(metadata, locals())
fun_fonts_aug = a.FunFontsAugmenter(
granularity, aug_min, aug_max, aug_p, vary_fonts, fonts_path, priority_words
)
aug_texts = fun_fonts_aug.augment(texts, n)
txtutils.get_metadata(
metadata=metadata,
function_name="replace_fun_fonts",
aug_texts=aug_texts,
**func_kwargs,
)
return aug_texts
def replace_similar_chars(
texts: Union[str, List[str]],
aug_char_p: float = 0.3,
aug_word_p: float = 0.3,
min_char: int = 2,
aug_char_min: int = 1,
aug_char_max: int = 1000,
aug_word_min: int = 1,
aug_word_max: int = 1000,
n: int = 1,
mapping_path: Optional[str] = None,
priority_words: Optional[List[str]] = None,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Replaces letters in each text with similar characters
@param texts: a string or a list of text documents to be augmented
@param aug_char_p: probability of letters to be replaced in each word
@param aug_word_p: probability of words to be augmented
@param min_char: minimum # of letters in a word for a valid augmentation
@param aug_char_min: minimum # of letters to be replaced in each word
@param aug_char_max: maximum # of letters to be replaced in each word
@param aug_word_min: minimum # of words to be augmented
@param aug_word_max: maximum # of words to be augmented
@param n: number of augmentations to be performed for each text
@param mapping_path: iopath uri where the mapping is stored
@param priority_words: list of target words that the augmenter should
prioritize to augment first
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
func_kwargs = txtutils.get_func_kwargs(metadata, locals())
char_aug = a.LetterReplacementAugmenter(
min_char,
aug_char_min,
aug_char_max,
aug_char_p,
aug_word_min,
aug_word_max,
aug_word_p,
mapping_path,
priority_words,
)
aug_texts = char_aug.augment(texts, n)
txtutils.get_metadata(
metadata=metadata,
function_name="replace_similar_chars",
aug_texts=aug_texts,
**func_kwargs,
)
return aug_texts
def replace_similar_unicode_chars(
texts: Union[str, List[str]],
aug_char_p: float = 0.3,
aug_word_p: float = 0.3,
min_char: int = 2,
aug_char_min: int = 1,
aug_char_max: int = 1000,
aug_word_min: int = 1,
aug_word_max: int = 1000,
n: int = 1,
mapping_path: str = UNICODE_MAPPING_PATH,
priority_words: Optional[List[str]] = None,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Replaces letters in each text with similar unicodes
@param texts: a string or a list of text documents to be augmented
@param aug_char_p: probability of letters to be replaced in each word
@param aug_word_p: probability of words to be augmented
@param min_char: minimum # of letters in a word for a valid augmentation
@param aug_char_min: minimum # of letters to be replaced in each word
@param aug_char_max: maximum # of letters to be replaced in each word
@param aug_word_min: minimum # of words to be augmented
@param aug_word_max: maximum # of words to be augmented
@param n: number of augmentations to be performed for each text
@param mapping_path: iopath uri where the mapping is stored
@param priority_words: list of target words that the augmenter should
prioritize to augment first
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
func_kwargs = txtutils.get_func_kwargs(metadata, locals())
unicode_aug = a.LetterReplacementAugmenter(
min_char,
aug_char_min,
aug_char_max,
aug_char_p,
aug_word_min,
aug_word_max,
aug_word_p,
mapping_path,
priority_words,
)
aug_texts = unicode_aug.augment(texts, n)
txtutils.get_metadata(
metadata=metadata,
function_name="replace_similar_unicode_chars",
aug_texts=aug_texts,
**func_kwargs,
)
return aug_texts
def replace_upside_down(
texts: Union[str, List[str]],
aug_p: float = 0.3,
aug_min: int = 1,
aug_max: int = 1000,
granularity: str = "all",
n: int = 1,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Flips words in the text upside down depending on the granularity
@param texts: a string or a list of text documents to be augmented
@param aug_p: probability of words to be augmented
@param aug_min: minimum # of words to be augmented
@param aug_max: maximum # of words to be augmented
@param granularity: the level at which the font is applied; this must be
either word, char, or all
@param n: number of augmentations to be performed for each text
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
func_kwargs = txtutils.get_func_kwargs(metadata, locals())
upside_down_aug = a.UpsideDownAugmenter(granularity, aug_min, aug_max, aug_p)
aug_texts = upside_down_aug.augment(texts, n)
txtutils.get_metadata(
metadata=metadata,
function_name="replace_upside_down",
aug_texts=aug_texts,
**func_kwargs,
)
return aug_texts
def simulate_typos(
texts: Union[str, List[str]],
aug_char_p: float = 0.3,
aug_word_p: float = 0.3,
min_char: int = 2,
aug_char_min: int = 1,
aug_char_max: int = 1,
aug_word_min: int = 1,
aug_word_max: int = 1000,
n: int = 1,
misspelling_dict_path: str = MISSPELLING_DICTIONARY_PATH,
priority_words: Optional[List[str]] = None,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Simulates typos in each text using misspellings, keyboard distance, and swapping
@param texts: a string or a list of text documents to be augmented
@param aug_char_p: probability of letters to be replaced in each word;
This is only applicable for keyboard distance and swapping
@param aug_word_p: probability of words to be augmented
@param min_char: minimum # of letters in a word for a valid augmentation;
This is only applicable for keyboard distance and swapping
@param aug_char_min: minimum # of letters to be replaced/swapped in each word;
This is only applicable for keyboard distance and swapping
@param aug_char_max: maximum # of letters to be replaced/swapped in each word;
This is only applicable for keyboard distance and swapping
@param aug_word_min: minimum # of words to be augmented
@param aug_word_max: maximum # of words to be augmented
@param n: number of augmentations to be performed for each text
@param misspelling_dict_path: iopath uri where the misspelling dictionary is stored
@param priority_words: list of target words that the augmenter should
prioritize to augment first
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
func_kwargs = txtutils.get_func_kwargs(metadata, locals())
typo_aug = a.TypoAugmenter(
min_char,
aug_char_min,
aug_char_max,
aug_char_p,
aug_word_min,
aug_word_max,
aug_word_p,
misspelling_dict_path,
priority_words,
)
aug_texts = typo_aug.augment(texts, n)
txtutils.get_metadata(
metadata=metadata,
function_name="simulate_typos",
aug_texts=aug_texts,
**func_kwargs,
)
return aug_texts
def split_words(
texts: Union[str, List[str]],
aug_word_p: float = 0.3,
min_char: int = 4,
aug_word_min: int = 1,
aug_word_max: int = 1000,
n: int = 1,
priority_words: Optional[List[str]] = None,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> List[str]:
"""
Splits words in the text into subwords
@param texts: a string or a list of text documents to be augmented
@param aug_word_p: probability of words to be augmented
@param min_char: minimum # of characters in a word for a split
@param aug_word_min: minimum # of words to be augmented
@param aug_word_max: maximum # of words to be augmented
@param n: number of augmentations to be performed for each text
@param priority_words: list of target words that the augmenter should
prioritize to augment first
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest length, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: the list of augmented text documents
"""
func_kwargs = txtutils.get_func_kwargs(metadata, locals())
split_aug = a.SplitWordsAugmenter(
min_char, aug_word_min, aug_word_max, aug_word_p, priority_words
)
aug_texts = split_aug.augment(texts, n)
txtutils.get_metadata(
metadata=metadata,
function_name="split_words",
aug_texts=aug_texts,
**func_kwargs,
)
return aug_texts