forked from facebookresearch/AugLy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransforms.py
1557 lines (1220 loc) · 54.4 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
import os
import random
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import augly.image.functional as F
import augly.utils as utils
from PIL import Image
"""
Base Classes for Transforms
"""
class BaseTransform(object):
def __init__(self, p: float = 1.0):
"""
@param p: the probability of the transform being applied; default value is 1.0
"""
assert 0 <= p <= 1.0, "p must be a value in the range [0, 1]"
self.p = p
def __call__(
self,
image: Image.Image,
force: bool = False,
metadata: Optional[List[Dict[str, Any]]] = None,
) -> Image.Image:
"""
@param image: PIL Image to be augmented
@param force: if set to True, the transform will be applied. Otherwise,
application is determined by the probability set
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
assert isinstance(image, Image.Image), "Image passed in must be a PIL Image"
assert type(force) == bool, "Expected type bool for variable `force`"
if not force and random.random() > self.p:
return image
return self.apply_transform(image, metadata)
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
This function is to be implemented in the child classes.
From this function, call the augmentation function with the
parameters specified
"""
raise NotImplementedError()
class BaseRandomRangeTransform(BaseTransform):
def __init__(self, min_val: float, max_val: float, p: float = 1.0):
"""
@param min_val: the lower value of the range
@param max_val: the upper value of the range
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.min_val = min_val
self.max_val = max_val
self.chosen_value = None
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
self.chosen_value = (
random.random() * (self.max_val - self.min_val)
) + self.min_val
return self.apply_random_transform(image, metadata=metadata)
def apply_random_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
This function is to be implemented in the child classes. It has
access to `self.chosen_value` which is the randomly chosen value
from the range specified to pass into the augmentation function
"""
raise NotImplementedError()
"""
Non-Random Transforms
These classes below are essentially class-based versions of the augmentation
functions previously defined. These classes were developed such that they can
be used with Composition operators (such as `torchvision`'s) and to support
use cases where a specific transform with specific attributes needs to be
applied multiple times.
Example:
>>> image = Image.open("....")
>>> blur_tsfm = Blur(radius=5.0, p=0.5)
>>> blurred_image = blur_tsfm(image)
"""
class ApplyLambda(BaseTransform):
def __init__(
self,
aug_function: Callable[..., Image.Image] = lambda x: x,
p: float = 1.0,
**kwargs,
):
"""
@param aug_function: the augmentation function to be applied onto the image
(should expect a PIL image as input and return one)
@param p: the probability of the transform being applied; default value is 1.0
@param **kwargs: the input attributes to be passed into the augmentation
function to be applied
"""
super().__init__(p)
self.aug_function = aug_function
self.kwargs = kwargs
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Apply a user-defined lambda on an image
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.apply_lambda(
image, aug_function=self.aug_function, metadata=metadata, **self.kwargs
)
class Blur(BaseTransform):
def __init__(self, radius: float = 2.0, p: float = 1.0):
"""
@param radius: the larger the radius, the blurrier the image
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.radius = radius
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Blurs the image
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.blur(image, radius=self.radius, metadata=metadata)
class Brightness(BaseTransform):
def __init__(self, factor: float = 1.0, p: float = 1.0):
"""
@param factor: values less than 1.0 darken the image and values greater than
1.0 brighten the image. Setting factor to 1.0 will not alter the image's
brightness
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.factor = factor
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Alters the brightness of the image
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.brightness(image, factor=self.factor, metadata=metadata)
class ChangeAspectRatio(BaseTransform):
def __init__(self, ratio: float = 1.0, p: float = 1.0):
"""
@param ratio: aspect ratio, i.e. width/height, of the new image
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.ratio = ratio
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Alters the aspect ratio of the image
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.change_aspect_ratio(image, ratio=self.ratio, metadata=metadata)
class ColorJitter(BaseTransform):
def __init__(
self,
brightness_factor: float = 1.0,
contrast_factor: float = 1.0,
saturation_factor: float = 1.0,
p: float = 1.0,
):
"""
@param brightness_factor: a brightness factor below 1.0 darkens the image,
a factor of 1.0 does not alter the image, and a factor greater than 1.0
brightens the image
@param contrast_factor: a contrast factor below 1.0 removes contrast, a factor
of 1.0 gives the original image, and a factor greater than 1.0 adds contrast
@param saturation_factor: a saturation factor of below 1.0 lowers the saturation,
a factor of 1.0 gives the original image, and a factor greater than 1.0 adds
saturation
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.brightness_factor = brightness_factor
self.contrast_factor = contrast_factor
self.saturation_factor = saturation_factor
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Color jitters the image
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.color_jitter(
image,
brightness_factor=self.brightness_factor,
contrast_factor=self.contrast_factor,
saturation_factor=self.saturation_factor,
metadata=metadata,
)
class Contrast(BaseTransform):
def __init__(self, factor: float = 1.0, p: float = 1.0):
"""
@param factor: zero gives a grayscale image, values below 1.0 decrease contrast,
a factor of 1.0 gives the original image, and a factor greater than 1.0
increases contrast
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.factor = factor
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Alters the contrast of the image
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.contrast(image, factor=self.factor, metadata=metadata)
class ConvertColor(BaseTransform):
def __init__(
self,
mode: Optional[str] = None,
matrix: Union[
None,
Tuple[float, float, float, float],
Tuple[
float,
float,
float,
float,
float,
float,
float,
float,
float,
float,
float,
float,
],
] = None,
dither: Optional[int] = None,
palette: int = 0,
colors: int = 256,
p: float = 1.0,
):
"""
@param mode: defines the type and depth of a pixel in the image. If mode is
omitted, a mode is chosen so that all information in the image and the
palette can be represented without a palette. For list of available modes,
check: https://pillow.readthedocs.io/en/stable/handbook/concepts.html#concept-modes
@param matrix: an optional conversion matrix. If given, this should be 4- or
12-tuple containing floating point values.
@param dither: dithering method, used when converting from mode “RGB” to “P” or
from “RGB” or “L” to “1”. Available methods are NONE or FLOYDSTEINBERG (default)
@param palette: palette to use when converting from mode “RGB” to “P”. Available
palettes are WEB or ADAPTIVE
@param colors: number of colors to use for the ADAPTIVE palette. Defaults to 256
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.mode = mode
self.matrix = matrix
self.dither = dither
self.palette = palette
self.colors = colors
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Converts the image in terms of color modes
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.convert_color(
image,
mode=self.mode,
matrix=self.matrix,
dither=self.dither,
palette=self.palette,
colors=self.colors,
metadata=metadata,
)
class Crop(BaseTransform):
def __init__(
self,
x1: float = 0.25,
y1: float = 0.25,
x2: float = 0.75,
y2: float = 0.75,
p: float = 1.0,
):
"""
@param x1: position of the left edge of cropped image relative to the width
of the original image; must be a float value between 0 and 1
@param y1: position of the top edge of cropped image relative to the height
of the original image; must be a float value between 0 and 1
@param x2: position of the right edge of cropped image relative to the width
of the original image; must be a float value between 0 and 1
@param y2: position of the bottom edge of cropped image relative to the height
of the original image; must be a float value between 0 and 1
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.x1, self.y1 = x1, y1
self.x2, self.y2 = x2, y2
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Crops the image
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.crop(
image, x1=self.x1, y1=self.y1, x2=self.x2, y2=self.y2, metadata=metadata
)
class EncodingQuality(BaseTransform):
def __init__(self, quality: int = 50, p: float = 1.0):
"""
@param quality: JPEG encoding quality. 0 is lowest quality, 100 is highest
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.quality = quality
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Changes the JPEG encoding quality level
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.encoding_quality(image, quality=self.quality, metadata=metadata)
class Grayscale(BaseTransform):
def __init__(self, mode: str = "luminosity", p: float = 1.0):
"""
@param mode: the type of greyscale conversion to perform; two options are
supported ("luminosity" and "average")
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.mode = mode
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Alters an image to be grayscale
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.grayscale(image, mode=self.mode, metadata=metadata)
class HFlip(BaseTransform):
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Horizontally flips an image
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.hflip(image, metadata=metadata)
class MaskedComposite(BaseTransform):
def __init__(
self, transform_function: BaseTransform, mask: Image.Image, p: float = 1.0
):
"""
@param mask: the path to an image or a variable of type PIL.Image.Image for
masking. This image can have mode “1”, “L”, or “RGBA”, and must have the
same size as the other two images. If the mask is not provided the function
returns the augmented image
@param transform_function: the augmentation function to be applied. If
transform_function is not provided, function returns the input image
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.mask = mask
self.transform_function = transform_function
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Applies given augmentation function to the masked area of the image
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.masked_composite(
image,
mask=self.mask,
transform_function=self.transform_function,
metadata=metadata,
)
class MemeFormat(BaseTransform):
def __init__(
self,
text: str = "LOL",
font_file: str = utils.MEME_DEFAULT_FONT,
opacity: float = 1.0,
text_color: Tuple[int, int, int] = utils.DEFAULT_COLOR,
caption_height: int = 250,
meme_bg_color: Tuple[int, int, int] = utils.WHITE_RGB_COLOR,
p: float = 1.0,
):
"""
@param text: the text to be overlaid/used in the meme. note: if using a very
long string, please add in newline characters such that the text remains
in a readable font size
@param font_file: iopath uri to the .ttf font file
@param opacity: the lower the opacity, the more transparent the text
@param text_color: color of the text in RGB values
@param caption_height: the height of the meme caption
@param meme_bg_color: background color of the meme caption in RGB values
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.text = text
self.text_color, self.opacity = text_color, opacity
self.caption_height, self.meme_bg_color = caption_height, meme_bg_color
self.font_file = font_file
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Creates a new image that looks like a meme, given text and an image
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.meme_format(
image,
text=self.text,
font_file=self.font_file,
opacity=self.opacity,
text_color=self.text_color,
caption_height=self.caption_height,
meme_bg_color=self.meme_bg_color,
metadata=metadata,
)
class Opacity(BaseTransform):
def __init__(self, level: float = 1.0, p: float = 1.0):
"""
@param level: the level the opacity should be set to, where 0 means completely
transparent and 1 means no transparency at all
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.level = level
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Alters the opacity of an image
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.opacity(image, level=self.level, metadata=metadata)
class OverlayEmoji(BaseTransform):
def __init__(
self,
emoji_path: str = utils.EMOJI_PATH,
opacity: float = 1.0,
emoji_size: float = 0.15,
x_pos: float = 0.4,
y_pos: float = 0.8,
p: float = 1.0,
):
"""
@param emoji_path: iopath uri to the emoji image
@param opacity: the lower the opacity, the more transparent the overlaid emoji
@param emoji_size: size of the emoji is emoji_size * height of the original image
@param x_pos: position of emoji relative to the image width
@param y_pos: position of emoji relative to the image height
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.emoji_path = emoji_path
self.emoji_size, self.opacity = emoji_size, opacity
self.x_pos, self.y_pos = x_pos, y_pos
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Overlay an emoji onto the original image
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.overlay_emoji(
image,
emoji_path=self.emoji_path,
opacity=self.opacity,
emoji_size=self.emoji_size,
x_pos=self.x_pos,
y_pos=self.y_pos,
metadata=metadata,
)
class OverlayImage(BaseTransform):
def __init__(
self,
overlay: Union[str, Image.Image],
opacity: float = 1.0,
overlay_size: float = 1.0,
x_pos: float = 0.4,
y_pos: float = 0.4,
p: float = 1.0,
):
"""
@param overlay: the path to an image or a variable of type PIL.Image.Image
that will be overlaid
@param opacity: the lower the opacity, the more transparent the overlaid image
@param overlay_size: size of the overlaid image is overlay_size * height
of the original image
@param x_pos: position of overlaid image relative to the image width
@param y_pos: position of overlaid image relative to the image height
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.overlay = overlay
self.overlay_size, self.opacity = overlay_size, opacity
self.x_pos, self.y_pos = x_pos, y_pos
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Overlays an image onto another image at position (width * x_pos, height * y_pos)
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.overlay_image(
image,
overlay=self.overlay,
opacity=self.opacity,
overlay_size=self.overlay_size,
x_pos=self.x_pos,
y_pos=self.y_pos,
metadata=metadata,
)
class OverlayOntoScreenshot(BaseTransform):
def __init__(
self,
template_filepath: str = utils.TEMPLATE_PATH,
template_bboxes_filepath: str = utils.BBOXES_PATH,
p: float = 1.0,
):
"""
@param template_filepath: iopath uri to the screenshot template
@param template_bboxes_filepath: iopath uri to the file containing the
bounding box for each template
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.template_filepath = template_filepath
self.template_bboxes_filepath = template_bboxes_filepath
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Overlay the image onto a screenshot template so it looks like it was
screenshotted on Instagram
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.overlay_onto_screenshot(
image,
template_filepath=self.template_filepath,
template_bboxes_filepath=self.template_bboxes_filepath,
metadata=metadata,
)
class OverlayStripes(BaseTransform):
def __init__(
self,
line_width: float = 0.5,
line_color: Tuple[int, int, int] = utils.WHITE_RGB_COLOR,
line_angle: float = 0,
line_density: float = 0.5,
line_type: Optional[str] = "solid",
line_opacity: float = 1.0,
p: float = 1.0
):
"""
@param line_width: the width of individual stripes as a float value ranging
from 0 to 1. Defaults to 0.5
@param line_color: color of the overlaid lines in RGB values
@param line_angle: the angle of the stripes in degrees, ranging from
-360° to 360°. Defaults to 0° or horizontal stripes
@param line_density: controls the distance between stripes represented
as a float value ranging from 0 to 1, with 1 indicating more densely
spaced stripes. Defaults to 0.5
@param line_type: the type of stripes. Current options include: dotted,
dashed, and solid. Defaults to solid
@param line_opacity: the opacity of the stripes, ranging from 0 to 1 with
1 being opaque. Defaults to 1
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.line_width, self.line_angle = line_width, line_angle
self.line_color, self.line_opacity = line_color, line_opacity
self.line_density = line_density
self.line_type = line_type
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Overlay stripe pattern onto the image (by default, stripes are horizontal)
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.overlay_stripes(
image,
line_width=self.line_width,
line_color=self.line_color,
line_angle=self.line_angle,
line_density=self.line_density,
line_type=self.line_type,
line_opacity=self.line_opacity,
metadata=metadata
)
class OverlayText(BaseTransform):
def __init__(
self,
text: List[int] = utils.DEFAULT_TEXT_INDICES,
font_file: str = utils.FONT_PATH,
font_size: float = 0.15,
opacity: float = 1.0,
color: Tuple[int, int, int] = utils.RED_RGB_COLOR,
x_pos: float = 0.0,
y_pos: float = 0.5,
p: float = 1.0,
):
"""
@param text: indices (into the file) of the characters to be overlaid
@param font_file: iopath uri to the .ttf font file
@param font_size: size of the overlaid characters, calculated as
font_size * min(height, width) of the original image
@param opacity: the lower the opacity, the more transparent the overlaid text
@param color: color of the overlaid text in RGB values
@param x_pos: position of the overlaid text relative to the image width
@param y_pos: position of the overlaid text relative to the image height
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.text, self.color = text, color
self.font_file = font_file
self.font_size, self.opacity = font_size, opacity
self.x_pos, self.y_pos = x_pos, y_pos
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Overlay text onto the image (by default, text is randomly overlaid)
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.overlay_text(
image,
text=self.text,
font_file=self.font_file,
font_size=self.font_size,
opacity=self.opacity,
color=self.color,
x_pos=self.x_pos,
y_pos=self.y_pos,
metadata=metadata,
)
class Pad(BaseTransform):
def __init__(
self,
w_factor: float = 0.25,
h_factor: float = 0.25,
color: Tuple[int, int, int] = utils.DEFAULT_COLOR,
p: float = 1.0,
):
"""
@param w_factor: width * w_factor pixels are padded to both left and
right of the image
@param h_factor: height * h_factor pixels are padded to the top and
the bottom of the image
@param color: color of the padded border in RGB values
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.w_factor = w_factor
self.h_factor = h_factor
self.color = color
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Pads the image
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.pad(
image,
w_factor=self.w_factor,
h_factor=self.h_factor,
color=self.color,
metadata=metadata,
)
class PadSquare(BaseTransform):
def __init__(
self, color: Tuple[int, int, int] = utils.DEFAULT_COLOR, p: float = 1.0
):
"""
@param color: color of the padded border in RGB values
@param p: the probability of the transform being applied; default value is 1.0
"""
super().__init__(p)
self.color = color
def apply_transform(
self, image: Image.Image, metadata: Optional[List[Dict[str, Any]]] = None
) -> Image.Image:
"""
Pads the shorter edge of the image such that it is now square-shaped
@param image: PIL Image to be augmented
@param metadata: if set to be a list, metadata about the function execution
including its name, the source & dest width, height, etc. will be appended to
the inputted list. If set to None, no metadata will be appended or returned
@returns: Augmented PIL Image
"""
return F.pad_square(image, color=self.color, metadata=metadata)