-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathfun-input-analyze-data.R
301 lines (243 loc) · 11.8 KB
/
fun-input-analyze-data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
required_data_names <- c("group_names","sampledata","results","data_long","geneids","data_results_table")
load_existing_rdata <- function(rdata_filepath) {
start_data <- load(rdata_filepath)
start_results <- get(start_data)
loaded_datanames <- names(start_results)
missing_datanames <- setdiff(required_data_names,loaded_datanames)
validate(
need(length(missing_datanames)==0,
paste("The data file does not contain all the required data objects for this version of the START app or is the wrong format.
Please reload your data using counts/analyzed data and re-save the .RData file.\nData objects missing:",
paste0(missing_datanames,collapse=", ")))
)
return(start_results)
}
# rdata_filepath <- "data/mousecounts_example.RData"
# load_existing_rdata(rdata_filepath)
extract_count_data <- function(alldata, tmpexprcols, tmpgenecols) {
#split expression names into groups
sampleid <- colnames(alldata[,tmpexprcols])
tmpnames <- do.call(rbind,strsplit(sampleid,"_",fixed=TRUE))
group_names <- unique(tmpnames[,1])
group <- tmpnames[,1]
rep_id <- tmpnames[,2]
sampledata = data.frame(sampleid,group,rep_id)
countdata <- alldata[,tmpexprcols,drop=FALSE]
geneids <- alldata[,tmpgenecols,drop=FALSE]
tmpkeep = which(apply(is.na(geneids),1,mean)<1) #remove rows with no gene identifiers
print(paste0("Num genes kept after removing empty geneids: ",
length(tmpkeep)," of ", nrow(geneids)))
validate(need(length(tmpkeep)>0,
message = "Your data is empty. Please check file format is .csv.
You may need a non-empty gene identifier column."))
geneids = geneids[tmpkeep,,drop=FALSE]
countdata = countdata[tmpkeep,,drop=FALSE]
alldata = alldata[tmpkeep,,drop=FALSE]
# Create unique identifier
geneids = geneids%>%unite_("unique_id",colnames(geneids),remove = FALSE)
#if geneids not unique
if(length(unique(geneids$unique_id))<nrow(geneids)) {
geneids = geneids%>%group_by(unique_id)%>%
mutate(rn = row_number(unique_id),
new = ifelse(rn==1,unique_id,paste(unique_id,rn,sep="_")))%>%
ungroup()%>%mutate(unique_id=new)%>%select(-rn,-new)
}
countdata = as.data.frame(countdata) # so we can add rownames
rownames(countdata) = geneids$unique_id
return(list(countdata=countdata,
geneids=geneids,
group_names=group_names,
sampledata=sampledata,
alldata=alldata))
}
# Check if data appears to be integer counts. If not, skip voom.
is_datacounts <- function(input) {
remainder = sum(apply(input,2,function(k) sum(k%%1,na.rm=T)),na.rm=T)
if (remainder ==0) {
TRUE
} else {
FALSE
}
}
analyze_expression_data <- function(alldata, analysis_method = "edgeR", numgeneids = 0) {
# catch incorrect gene id error, only works if geneids are 1:numbeneids and no other columns are characters
numgeneids <- max(numgeneids, max(which(sapply(alldata,class)=="character")))
validate(
need(numgeneids>0,
message = "You have no columns with characters, check that you have a least one column of gene ids
as the first column in your file."))
tmpgenecols = 1:numgeneids
tmpexprcols = setdiff(1:ncol(alldata),tmpgenecols)
validate(
need(length(tmpexprcols)>0,
message = "Your last column has characters. Check that your count data is numeric and that your gene ids are in the
first (left) columns only."))
datalist <- extract_count_data(alldata, tmpexprcols, tmpgenecols)
# do not perform voom/edgeR on non-counts and assume log2 uploaded intensities
# is_counts <- is_datacounts(tmpcount$countdata)
print("analyze data")
countdata <- datalist$countdata # or normalized expressiondata
sampledata <- datalist$sampledata
geneids <- datalist$geneids
group_names <- datalist$group_names
alldata <- datalist$alldata
#add filter for max # counts
#handle NAs, update this later
countdata[which(is.na(countdata),arr.ind=T)] <- 0 #allow choice of this or removal
# Only one group
if(nlevels(sampledata$group)<2) {
design <- matrix(1,nrow=nrow(sampledata),ncol=1)
colnames(design) = "(Intercept)"
}else{ # more than one group
design <- model.matrix(~0+sampledata$group) # 0+ allows selection of reference group
colnames(design) = levels(as.factor(sampledata$group))
}
num_groups_without_reps = sum(colSums(design)==1)
validate(
need(num_groups_without_reps==0,
message = glue::glue("{num_groups_without_reps} of your groups do not have replicates. Analysis cannot be performed.")))
dge <- DGEList(counts=countdata) #TMM normalization first
dge <- calcNormFactors(dge)
log2cpm <- cpm(dge, prior.count=0.5, log=TRUE)
# Expression data
if(analysis_method=="edgeR") {
if(!is_datacounts(countdata)) {
print("Warning: You are uploading data that does not appear to be counts, the analysis pipeline will not be valid!")
}
expr_data = log2cpm
expr_data_name = "log2cpm"
}else if(analysis_method=="voom") {
if(max(colSums(design)==1)) {
# if only one replicate for each group
v <- voom(dge)
}else{
v <- voom(dge,design)
}
expr_data = v$E
expr_data_name = "log2_normalized_voom"
}else if (analysis_method=="linear_model") {
print("already normalized")
countdata2 = countdata
# crude check for logged data, unlikely to have a logged value >1000
if(max(countdata)>1000) countdata2 = log2(countdata+0.5)
log2cpm = countdata2
expr_data = countdata2
expr_data_name = "log2_expression"
}
# Test results
if(length(group_names)==1) { #If only one group no tests
lmobj_res = data.frame(matrix(NA,nrow=nrow(expr_data),ncol=6))
colnames(lmobj_res) = c("test","denom_group","numer_group","logFC","P.Value","adj.P.Val")
lmobj_res = cbind("unique_id"=geneids$unique_id,lmobj_res)
lmobj_res$numer_group = group_names[1]
lmobj_res$test = "None"
}else{
tmpgroup = factor(sampledata$group)
lmobj_res = list()
for(ii in 1:length(group_names)) {
grp <- relevel(tmpgroup, ref= group_names[ii])
design <- model.matrix(~grp)
dge <- estimateDisp(dge,design)
if(analysis_method=="edgeR") {
fit <- glmQLFit(dge,design)
beta <- fit$coefficients[,-1,drop=FALSE]
pval <- sapply(2:(ncol(design)),
function(k) {glmQLFTest(fit,k)$table[,"PValue"]})
}else if(analysis_method=="voom") {
v <- voom(dge, design, plot=FALSE)
# v <- voom(countdata,design,plot=TRUE,normalize="quantile") #use this to allow different normalization
fit <- lmFit(v,design)
fit <- eBayes(fit)
beta <- fit$coefficients[,-1,drop=FALSE]
pval <- sapply(2:(ncol(design)),
function(k) {topTable(fit,coef=k,number = nrow(beta))[,"P.Value"]})
}else if(analysis_method=="linear_model") {
lm.obj = lm(t(expr_data) ~ grp)
beta = t(lm.obj$coefficients)[,-1,drop=FALSE]
pval = t(lm.pval(lm.obj)$pval)[,-1,drop=FALSE]
}
pval.adj <- apply(pval,2,p.adjust,method="BH")
colnames(beta) = colnames(pval) = colnames(pval.adj) =
gsub("grp","",colnames(beta))
rownames(pval) = rownames(pval.adj) = rownames(beta)
tmpout = bind_rows(as_tibble(beta, rownames="unique_id") %>% tibble::add_column(type = "logFC"),
as_tibble(pval, rownames="unique_id") %>% tibble::add_column(type = "P.Value"),
as_tibble(pval.adj, rownames="unique_id") %>% tibble::add_column(type = "adj.P.Val"))
tmpout = tmpout %>% select(unique_id, type, everything()) %>%
pivot_longer(cols= -(unique_id:type), names_to = "numer_group")
tmpout = tmpout %>% pivot_wider(names_from = "type", values_from = "value")
tmpout$denom_group = group_names[ii]
tmpout$test = with(tmpout, paste(numer_group,denom_group,sep="/"))
tmpout = tmpout[,c("unique_id","test","denom_group","numer_group",
"logFC","P.Value","adj.P.Val")]
lmobj_res[[ii]] = tmpout %>% mutate_if(is.factor,as.character)
}
lmobj_res = bind_rows(lmobj_res)
}
# matrix of pvalues with each column a type of test, same for logfc
pvals = lmobj_res%>%select(unique_id,test,adj.P.Val)%>%spread(test,adj.P.Val)
logfcs = lmobj_res%>%select(unique_id,test,logFC)%>%spread(test,logFC)
colnames(pvals)[-1] = paste0("padj_",colnames(pvals)[-1])
colnames(logfcs)[-1] = paste0("logFC_",colnames(logfcs)[-1])
tmpdat = cbind(geneids,log2cpm)
tmpdat = left_join(tmpdat,logfcs)
tmpdat = left_join(tmpdat,pvals)
data_results_table = tmpdat%>%select(-unique_id) #save this into csv
tmpexprdata = data.frame("unique_id" =geneids$unique_id,expr_data)
tmpcountdata = data.frame("unique_id"=geneids$unique_id,countdata)
tmplog2cpm = data.frame("unique_id"=geneids$unique_id,log2cpm)
log2cpm_long = tmplog2cpm %>% pivot_longer(-unique_id, names_to = "sampleid", values_to = "log2cpm")
countdata_long = tmpcountdata %>% pivot_longer(-unique_id, names_to = "sampleid", values_to = "count")
#countdata_long$log2count = log2(countdata_long$count+.25)
exprdata_long = tmpexprdata %>% pivot_longer(-unique_id, names_to = "sampleid", values_to = expr_data_name)
data_long = countdata_long
if(analysis_method!="linear_model") {data_long = left_join(data_long,log2cpm_long)}
if(analysis_method!="edgeR") {data_long = left_join(data_long,exprdata_long)}
data_long = data_long %>% separate(sampleid, into = c("group","rep"),sep = "_", remove = FALSE, extra = "merge")
tmpgeneidnames = colnames(geneids%>%select(-unique_id))
if(any(tmpgeneidnames%in%colnames(data_long))) {
data_long = data_long%>%select(-one_of(tmpgeneidnames))
}
print('analyze data: done')
return(list("countdata"=countdata,
"group_names"=group_names,
"sampledata"=sampledata,
"results"=lmobj_res,
"data_long"=data_long,
"geneids"=geneids,
"data_results_table"=data_results_table))
}
load_analyzed_data <- function(alldata, tmpgenecols, tmpexprcols, tmpfccols, tmppvalcols, tmpqvalcols, isfclogged) {
tmpcount <- extract_count_data(alldata, tmpexprcols, tmpgenecols)
countdata = tmpcount$countdata
geneids = tmpcount$geneids
group_names = tmpcount$group_names
sampledata = tmpcount$sampledata
alldata = tmpcount$alldata
tmpfc = alldata[,tmpfccols,drop=F]
if(isfclogged=="No (Log my data please)") {log2(tmpfc)}
fcdata = cbind("unique_id"=geneids$unique_id,tmpfc)
pvaldata = cbind("unique_id"=geneids$unique_id,alldata[,tmppvalcols,drop=F])
qvaldata = cbind("unique_id"=geneids$unique_id,alldata[,tmpqvalcols,drop=F])
tmpnames = paste(colnames(fcdata),colnames(qvaldata),sep=":")[-1]
colnames(fcdata)[-1] = tmpnames
colnames(pvaldata)[-1] = tmpnames
colnames(qvaldata)[-1] = tmpnames
fcdatalong = fcdata%>%gather(key = "test",value = "logFC",-1)
pvaldatalong = pvaldata%>%gather(key = "test",value = "P.Value",-1)
qvaldatalong = qvaldata%>%gather(key = "test",value = "adj.P.Val",-1)
tmpres = full_join(fcdatalong,pvaldatalong)
tmpres = full_join(tmpres,qvaldatalong)
tmpdat = cbind("unique_id"=geneids$unique_id,countdata)
tmpdatlong = tmpdat%>%gather(key="sampleid",value="expr",-1)
data_long = left_join(tmpdatlong,sampledata%>%select(sampleid,group))
# add summized means by group/unique id for scatterplot
tmpres$test = as.character(tmpres$test)
return(list("countdata"=countdata,
"group_names"=group_names,
"sampledata"=sampledata,
"results"=tmpres,
"data_long"=data_long,
"geneids"=geneids,
"data_results_table"=alldata))
}