-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
63 lines (50 loc) · 1.64 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import torch
import torch.nn as nn
from torchvision import datasets, transforms
from lib.images import IMAGE_FOLDER
# Load Dataset
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
# image = (image - mean) / std, range [-1, 1]
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
try:
dataset = datasets.ImageFolder(root=IMAGE_FOLDER, transform=transform)
NUM_CLASSES = len(dataset.classes)
class_to_idx = dataset.class_to_idx
except Exception as e:
print(e)
exit()
# Define model
class LeafClassifier(nn.Module):
"""
Leaf Classifier that classifies the type of disease specified in the leaf
Inputs: leaf Images, shape of (256, 256, 3)
Labels: types of disease specified in the leaf
"""
def __init__(self):
super(LeafClassifier, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.conv3 = nn.Conv2d(64, 128, 3, 1)
self.conv4 = nn.Conv2d(128, 256, 3, 1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(256 * 14 * 14, 512)
self.fc2 = nn.Linear(512, NUM_CLASSES)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x = torch.relu(self.conv1(x))
x = self.pool(x)
x = torch.relu(self.conv2(x))
x = self.pool(x)
x = torch.relu(self.conv3(x))
x = self.pool(x)
x = torch.relu(self.conv4(x))
x = self.pool(x)
# Flatten tensor
x = x.view(-1, 256 * 14 * 14)
x = torch.relu(self.fc1(x))
x = self.dropout(x)
x = self.fc2(x)
return x