From 7179979353392bce68ac08592531faa1ca383d4b Mon Sep 17 00:00:00 2001 From: "Jiri (George) Lebl" Date: Fri, 8 Dec 2023 10:37:27 -0600 Subject: [PATCH] Add example and add figure for it, some small fixes --- CHANGES | 6 +- figures/intersect.eepic | 234 ++++++++++++++++++++++++++++++++++++++++ figures/intersect.xp | 49 +++++++++ scv.tex | 82 ++++++++------ 4 files changed, 336 insertions(+), 35 deletions(-) create mode 100644 figures/intersect.eepic create mode 100644 figures/intersect.xp diff --git a/CHANGES b/CHANGES index c08ca8f..d4630ae 100644 --- a/CHANGES +++ b/CHANGES @@ -174,9 +174,11 @@ and that's more consistent. renumbered.
  • Simplify the statement in 6.5.4.
  • Define the dimension of a subvariety and the concept of pure dimension -using only regular points, that way we get around the technicality -that we never prove that the set of regular points is dense in general. +using only regular points, which seems a little ontologically simpler. Also simplifies the last exercise in 6.5. +
  • Add the intersection of two complex manifolds to example 6.5.6, +and add the relevant figure. +Also rename X and Y to U and M so that the naming in the example makes more sense.
  • Move the statement of the theorem about \(Z_f\) to section 6.5 from 6.6 (now Theorem 6.5.9), and add the generalization of this result (that regular points exist and are thus dense) to arbitrary varieties, diff --git a/figures/intersect.eepic b/figures/intersect.eepic new file mode 100644 index 0000000..9858e52 --- /dev/null +++ b/figures/intersect.eepic @@ -0,0 +1,234 @@ +%% Generated from intersect.xp on Fri Dec 8 09:53:52 AM CST 2023 by +%% ePiX-1.2.22 +%% +%% Cartesian bounding box: [-1,1] x [-1,1] +%% Actual size: 2.25 x 1.5in +%% Figure offset: left by 0in, down by 0in +%% +%% usepackages tikz +%% +\xdefinecolor{rgb_000000}{rgb}{0,0,0}% +\xdefinecolor{rgb_999999}{rgb}{0.6,0.6,0.6}% +\begin{tikzpicture} +\pgfsetlinewidth{0.4pt} +\useasboundingbox (0in,0in) rectangle (2.25in,1.5in); +\pgfsetstrokecolor{rgb_999999} +\pgfsetlinewidth{0.8pt} +\filldraw[color=rgb_999999] (0.027439in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (0.0823171in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (0.137195in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (0.192073in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (0.246951in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (0.301829in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (0.356707in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (0.411585in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (0.466463in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (0.521341in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (0.57622in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (0.631098in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (0.685976in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (0.740854in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (0.795732in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (0.85061in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (0.905488in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (0.960366in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.01524in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.07012in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.17988in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.23476in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.28963in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.34451in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.39939in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.45427in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.50915in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.56402in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.6189in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.67378in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.72866in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.78354in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.83841in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.89329in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.94817in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (2.00305in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (2.05793in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (2.1128in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (2.16768in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (2.22256in,0.75in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.0267857in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.0803571in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.133929in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.1875in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.241071in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.294643in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.348214in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.401786in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.455357in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.508929in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.5625in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.616071in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.669643in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.723214in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.776786in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.830357in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.883929in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.9375in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,0.991071in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,1.04464in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,1.09821in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,1.15179in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,1.20536in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,1.25893in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,1.3125in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,1.36607in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,1.41964in) circle(0.0055348in); +\filldraw[color=rgb_999999] (1.125in,1.47321in) circle(0.0055348in); +\pgfsetlinewidth{0.4pt} +\filldraw[color=rgb_999999] (0.027439in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.0823171in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.137195in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.192073in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.246951in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.301829in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.356707in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.411585in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.466463in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.521341in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.57622in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.631098in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.685976in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.740854in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.795732in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.85061in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.905488in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.960366in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.01524in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.07012in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.125in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.17988in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.23476in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.28963in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.34451in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.39939in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.45427in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.50915in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.56402in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6189in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.67378in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.72866in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.78354in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.83841in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.89329in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.94817in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.00305in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.05793in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.1128in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.16768in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.22256in,1.5in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.0267857in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.0803571in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.133929in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.1875in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.241071in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.294643in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.348214in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.401786in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.455357in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.508929in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.5625in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.616071in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.669643in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.723214in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.776786in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.830357in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.883929in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.9375in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,0.991071in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,1.04464in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,1.09821in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,1.15179in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,1.20536in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,1.25893in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,1.3125in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,1.36607in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,1.41964in) circle(0.0027674in); +\filldraw[color=rgb_999999] (1.6875in,1.47321in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.0267857in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.0803571in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.133929in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.1875in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.241071in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.294643in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.348214in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.401786in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.455357in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.508929in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.5625in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.616071in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.669643in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.723214in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.776786in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.830357in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.883929in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.9375in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,0.991071in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,1.04464in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,1.09821in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,1.15179in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,1.20536in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,1.25893in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,1.3125in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,1.36607in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,1.41964in) circle(0.0027674in); +\filldraw[color=rgb_999999] (0.5625in,1.47321in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.0267857in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.0803571in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.133929in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.1875in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.241071in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.294643in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.348214in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.401786in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.455357in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.508929in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.5625in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.616071in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.669643in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.723214in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.776786in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.830357in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.883929in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.9375in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,0.991071in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,1.04464in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,1.09821in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,1.15179in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,1.20536in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,1.25893in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,1.3125in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,1.36607in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,1.41964in) circle(0.0027674in); +\filldraw[color=rgb_999999] (2.25in,1.47321in) circle(0.0027674in); +\pgfsetstrokecolor{rgb_000000} +\draw (0in,0in)--(2.25in,0in); +\pgftext[at={\pgfpoint{0in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}\footnotesize $\rule{0.5pt}{6pt}$}}} +\pgftext[at={\pgfpoint{0.5625in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}\footnotesize $\rule{0.5pt}{6pt}$}}} +\pgftext[at={\pgfpoint{1.125in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}\footnotesize $\rule{0.5pt}{6pt}$}}} +\pgftext[at={\pgfpoint{1.6875in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}\footnotesize $\rule{0.5pt}{6pt}$}}} +\pgftext[at={\pgfpoint{2.25in}{0in}}] {\makebox(0,0)[b]{\hbox{\color{rgb_000000}\footnotesize $\rule{0.5pt}{6pt}$}}} +\pgftext[at={\pgfpoint{0in}{-0.055348in}}] {\makebox(0,0)[t]{\hbox{\color{rgb_000000}\footnotesize $-1$}}} +\pgftext[at={\pgfpoint{0.5625in}{-0.055348in}}] {\makebox(0,0)[t]{\hbox{\color{rgb_000000}\footnotesize $-0.5$}}} +\pgftext[at={\pgfpoint{1.125in}{-0.055348in}}] {\makebox(0,0)[t]{\hbox{\color{rgb_000000}\footnotesize $0$}}} +\pgftext[at={\pgfpoint{1.6875in}{-0.055348in}}] {\makebox(0,0)[t]{\hbox{\color{rgb_000000}\footnotesize $0.5$}}} +\pgftext[at={\pgfpoint{2.25in}{-0.055348in}}] {\makebox(0,0)[t]{\hbox{\color{rgb_000000}\footnotesize $1$}}} +\draw (0in,0in)--(0in,1.5in); +\pgftext[at={\pgfpoint{0in}{0in}}] {\makebox(0,0)[l]{\hbox{\color{rgb_000000}\footnotesize $\rule{6pt}{0.5pt}$}}} +\pgftext[at={\pgfpoint{0in}{0.75in}}] {\makebox(0,0)[l]{\hbox{\color{rgb_000000}\footnotesize $\rule{6pt}{0.5pt}$}}} +\pgftext[at={\pgfpoint{0in}{1.5in}}] {\makebox(0,0)[l]{\hbox{\color{rgb_000000}\footnotesize $\rule{6pt}{0.5pt}$}}} +\pgftext[at={\pgfpoint{-0.055348in}{0in}}] {\makebox(0,0)[r]{\hbox{\color{rgb_000000}\footnotesize $-1$}}} +\pgftext[at={\pgfpoint{-0.055348in}{0.75in}}] {\makebox(0,0)[r]{\hbox{\color{rgb_000000}\footnotesize $0$}}} +\pgftext[at={\pgfpoint{-0.055348in}{1.5in}}] {\makebox(0,0)[r]{\hbox{\color{rgb_000000}\footnotesize $1$}}} +\pgfsetlinewidth{0.8pt} +\draw (0in,0in)--(2.25in,1.5in); +\draw (0in,1.5in)--(2.25in,0in); +\end{tikzpicture} diff --git a/figures/intersect.xp b/figures/intersect.xp new file mode 100644 index 0000000..773cb52 --- /dev/null +++ b/figures/intersect.xp @@ -0,0 +1,49 @@ +/* slightly modified sample from epix samples gallery */ +#include "epix.h" +using namespace ePiX; + +int main() +{ + double slope; + double c; + double x; + + picture(P(-1.0,-1.0), P(1.0,1.0), "2.25x1.5in"); + + begin(); + + //h_axis(5); + //v_axis(5); + + //h_axis_labels(3, P(-1, 2), tl); // align top-left + //v_axis_labels(3, P(-1, 2), tl); + + pen(Black(0.4)); + line_style("."); + dash_size(1); + + bold(); + line(P(-1,0),P(1,0)); + line(P(0,-1),P(0,1)); + + plain(); + line(P(-1,1),P(1,1)); + line(P(0.5,-1),P(0.5,1)); + line(P(-0.5,-1),P(-0.5,1)); + line(P(1,-1),P(1,1)); + + solid(); + pen(Black()); + + font_size("footnotesize"); + bottom_axis(4, P(0,-4)).draw(); + left_axis(2, P(-4,0)).draw(); + + bold(); + line(P(-1,-1),P(1,1)); + line(P(-1,1),P(1,-1)); + + tikz_format(); + end(); +} + diff --git a/scv.tex b/scv.tex index 9ce2313..503706e 100644 --- a/scv.tex +++ b/scv.tex @@ -15448,13 +15448,13 @@ \section{Varieties} \label{sec:varieties} (\exerciseref{exercise:regdimwelldef}). \begin{example} -The set $X = \C^n$ is a complex submanifold of dimension $n$ +The set $U = \C^n$ is a complex submanifold of dimension $n$ (codimension $0$). -In particular, $X_{\mathit{reg}} = X$ and $X_{\mathit{sing}} = \emptyset$. +In particular, $U_{\mathit{reg}} = U$ and $U_{\mathit{sing}} = \emptyset$. -The set $Y = \bigl\{ z \in \C^3 : z_3 = z_1^2 - z_2^2 \bigr\}$ is a complex submanifold of +The set $M = \bigl\{ z \in \C^3 : z_3 = z_1^2 - z_2^2 \bigr\}$ is a complex submanifold of dimension $2$ (codimension $1$). Again, -$Y_{\mathit{reg}} = Y$ and $Y_{\mathit{sing}} = \emptyset$. +$M_{\mathit{reg}} = M$ and $M_{\mathit{sing}} = \emptyset$. On the other hand, the so-called \emph{\myindex{cusp}}, $C = \bigl\{ z \in \C^2 : z_1^3-z_2^2 = 0 \bigr\}$ is not a complex @@ -15464,14 +15464,26 @@ \section{Varieties} \label{sec:varieties} so $C_{\mathit{reg}} = C \setminus \{0\}$, and so $C_{\mathit{sing}} = \{ 0 \}$. The dimension at every regular point is $1$. -See \figureref{fig:cusp} for a +See \figureref{fig:cuspintersect} for a plot of $C$ in two real dimensions. +Another type of singularity could be where two complex manifolds +intersect. For example, $X = \{ z \in \C^2 : z_1^2-z_2^2 = 0 \}$ +is the union of the two complex manifolds of dimension 1 given by $z_1+z_2=0$ and +$z_1-z_2=0$. In this case $X_{\mathit{sing}} = \{ 0 \}$ and +$X_{\mathit{reg}} = X \setminus \{ 0 \}$. +See \figureref{fig:cuspintersect} for a +plot of $X$ in two real dimensions. + \begin{myfig} \medskip \subimport*{figures/}{cusp.eepic} +\qquad +\qquad +\subimport*{figures/}{intersect.eepic} \bigskip -\caption{The cusp.\label{fig:cusp}} +\caption{The cusp $C$ (left), and the intersecting manifolds $X$ +(right).\label{fig:cuspintersect}} \end{myfig} \end{example} @@ -15508,7 +15520,7 @@ \section{Varieties} \label{sec:varieties} there is a regular point. \begin{defn} -Let $X \subset U \subset \C^n$ be a (complex) subvariety of $U$. Let $p \in +Let $X \subset U \subset \C^n$ be a subvariety of $U$. Let $p \in X$ be a point. We define the (complex) \emph{\myindex{dimension}} of $X$ at $p$ to be \glsadd{not:dimpX}% @@ -15542,9 +15554,10 @@ \section{Varieties} \label{sec:varieties} of pure dimension $1$. \end{example} -Back in \sectionref{sec:riemannextzerosetsinjmaps}, we proved -following theorem (\thmref{thm:regptsdense}). We restate it in the -language of varieties. +Let us restate +\thmref{thm:regptsdense} we proved in +\sectionref{sec:riemannextzerosetsinjmaps} +in the language of varieties. \begin{thm} \label{thm:regptsdense2} Let $U \subset \C^n$ be a domain and $f \in \sO(U)$. @@ -15557,7 +15570,7 @@ \section{Varieties} \label{sec:varieties} Let us improve on this for arbitrary varieties. -\begin{lemma} +\begin{lemma} \label{lemma:regdense} Let $U \subset \C^n$ be open and let $X \subset U$ be a subvariety, then $X_{\mathit{reg}}$ is nonempty. Consequently, $X_{\mathit{reg}}$ is open and dense in $X$. @@ -15573,9 +15586,11 @@ \section{Varieties} \label{sec:varieties} $U$, so all points are regular. Suppose the lemma is true in dimension $n-1$. It is enough to find a regular point in some neighborhood of some point -$p \in X$, so suppose $p = 0$. +$p \in X$. +Suppose $p = 0$ for simplicity. Either $X$ contains a whole neighborhood of $0$, in which case -$0$ is a regular point, or there is some function $f$ near $0$ that vanishes on $X$. +$0$ is a regular point, or there is some holomorphic function +$f$ near $0$ that vanishes on $X$. After a small linear change of coordinates, the Weierstrass preparation theorem applies and we can assume that $f$ is a Weierstrass polynomial. Write the variables as @@ -15648,6 +15663,7 @@ \section{Hypervarieties} \label{section:hypervarieties} subvariety. \begin{thm} \label{thm:codim1var} +\pagebreak[0] If $(X,p)$ is a germ of a pure codimension-$1$ subvariety, then there is a germ of a holomorphic function $f$ at $p$ such that $(Z_f,p) = (X,p)$ and $I_p(X)$ is generated by $(f,p)$. @@ -15682,13 +15698,11 @@ \section{Hypervarieties} \label{section:hypervarieties} let $\alpha_1(z'),\ldots,\alpha_k(z')$ denote the distinct zeros that are in $X'$, that is, $\bigl(z',\alpha_\ell(z')\bigr) \in X'$. -If $\alpha_\ell$ is a holomorphic function in some small neighborhood and -$\bigl(z',\alpha_\ell(z')\bigr) \in X'$ at one point, then -$\bigl(z',\alpha_\ell(z')\bigr) \in X'$ for all nearby points too -as those are clearly in the same component of $X \setminus (E \times D)$. +Near each point $X'$ is a graph of a holomorphic function over +$U' \setminus E$, and so we can locally choose +$\alpha_1,\ldots,\alpha_k$ to be holomorphic. Furthermore, this means that the set $X'$ contains only regular points of $X$, which are of dimension $n-1$. - The number of such geometrically distinct zeros in $X'$ above each point in $U' \setminus E$ is locally constant. @@ -15726,18 +15740,16 @@ \section{Hypervarieties} \label{section:hypervarieties} the fact that $U' \setminus E$ is connected, this means that $X \setminus (E \times D)$ has at most finitely many components (at most $m$). -So we can find an $F$ for every topological component of -$X \setminus ( E \times D )$. Then we multiply those functions together -to get $f$. +We find an $F$ for every topological component of $X \setminus ( E \times D )$ +and we multiply those functions together to get $f$. No open piece $M \subset X_{\mathit{reg}}$ can lie completely in $E \times D$, -as otherwise $M$ would in fact agree with some open piece of $E \times D$, +as otherwise an open subset of $M$ would also be an open piece of $E \times D$, see \exerciseref{exercise:hypersurfaceinhypervariety}, but we know that $P$ must vanish on $M$, which is impossible as it only vanishes at finitely -many points for each fixed $z'$. Therefore, as $X_{\mathit{reg}}$ -is dense in $X$, the closure -of $X \setminus (E \times D)$ contains $X$ and so -$Z_f = X$. +many points for each fixed $z'$. +Therefore, as $X_{\mathit{reg}}$ is dense in $X$ (\lemmaref{lemma:regdense}), +the closure of $X \setminus (E \times D)$ contains $X$ and so $Z_f = X$. The fact that this $f$ generates $I_p(X)$ is left as \exerciseref{exercise:singlegenerator}. @@ -15748,8 +15760,8 @@ \section{Hypervarieties} \label{section:hypervarieties} \begin{example} It is not true that -if a dimension of a subvariety in $\C^n$ is $n-k$ (codimension $k$), -there are $k$ +a subvariety in $\C^n$ of dimension $n-k$ (codimension $k$) +has $k$ holomorphic functions that ``cut it out.'' That only works for $k=1$. The set defined by \begin{equation*} @@ -15824,12 +15836,16 @@ \section{Hypervarieties} \label{section:hypervarieties} \end{exercise} \begin{exercise} \label{exercise:hypersurfaceinhypervariety} -Suppose that $U \subset \C^n$ is a domain and $X \subset U$ -is a subvariety of dimension $n-1$. Suppose that $M$ +Suppose $U \subset \C^n$ is open and $X \subset U$ +is a subvariety of dimension $n-1$. Suppose $M$ is a small piece of a complex submanifold of dimension $n-1$ such that -$M \subset X$. Prove that the set $M \cap X_{\textit{sing}}$ is -nowhere dense in $M$. Hint: Locally near some point of $M$, make $M$ into -$\{z_n = 0 \}$ and apply \thmref{thm:discrthm} to $X$ there. +$M \subset X$. Prove that $M$ agrees with $X_{\textit{reg}}$ on a dense +open set, that is, +for each $p$ a dense open subset of $M$, +there is a neighborhood $W$ of $p$ such that +$M \cap W = X_{\textit{reg}} \cap W$. +Hint: Consider coordinates where +$M$ is a graph and \thmref{thm:discrthm} applies to $X$. \end{exercise} \begin{exercise}