-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathops.py
39 lines (32 loc) · 1.82 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import tensorflow as tf
def conv(inputs, kernel_size, output_num, stride_size=1, init_bias=0.0, conv_padding='SAME', stddev=0.01,
activation_func=tf.nn.relu):
input_size = inputs.get_shape().as_list()[-1]
conv_weights = tf.Variable(
tf.random_normal([kernel_size, kernel_size, input_size, output_num], dtype=tf.float32, stddev=stddev),
name='weights')
conv_biases = tf.Variable(tf.constant(init_bias, shape=[output_num], dtype=tf.float32), 'biases')
conv_layer = tf.nn.conv2d(inputs, conv_weights, [1, stride_size, stride_size, 1], padding=conv_padding)
conv_layer = tf.nn.bias_add(conv_layer, conv_biases)
if activation_func:
conv_layer = activation_func(conv_layer)
return conv_layer
def fc(inputs, output_size, init_bias=0.0, activation_func=tf.nn.relu, stddev=0.01):
input_shape = inputs.get_shape().as_list()
if len(input_shape) == 4:
fc_weights = tf.Variable(
tf.random_normal([input_shape[1] * input_shape[2] * input_shape[3], output_size], dtype=tf.float32,
stddev=stddev),
name='weights')
inputs = tf.reshape(inputs, [-1, fc_weights.get_shape().as_list()[0]])
else:
fc_weights = tf.Variable(tf.random_normal([input_shape[-1], output_size], dtype=tf.float32, stddev=stddev),
name='weights')
fc_biases = tf.Variable(tf.constant(init_bias, shape=[output_size], dtype=tf.float32), name='biases')
fc_layer = tf.matmul(inputs, fc_weights)
fc_layer = tf.nn.bias_add(fc_layer, fc_biases)
if activation_func:
fc_layer = activation_func(fc_layer)
return fc_layer
def lrn(inputs, depth_radius=2, alpha=0.0001, beta=0.75, bias=1.0):
return tf.nn.local_response_normalization(inputs, depth_radius=depth_radius, alpha=alpha, beta=beta, bias=bias)