-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
127 lines (105 loc) · 3.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
from os.path import join
import argparse
import torch
import numpy as np
import random
from data import build_dataloader
from models.modeling import build_gzsl_pipeline
from models.solver import make_optimizer, make_lr_scheduler
from models.engine.trainer import do_train, do_train_orignal
from models.config import cfg
from models.utils.comm import *
from models.utils import ReDirectSTD
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
try:
from apex import amp
except ImportError:
raise ImportError('Use APEX for multi-precision via apex.amp')
def train_model(cfg, local_rank, distributed):
seed = 12345
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
tr_dataloader, tu_loader, ts_loader, res = build_dataloader(cfg, is_distributed=distributed)
model = build_gzsl_pipeline(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model = model.to(device)
optimizer = make_optimizer(cfg, model)
scheduler = make_lr_scheduler(cfg, optimizer)
use_mixed_precision = cfg.DTYPE == "float16"
amp_opt_level = 'O1' if use_mixed_precision else 'O0'
model, optimizer = amp.initialize(model, optimizer, opt_level=amp_opt_level)
if distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[local_rank], output_device=local_rank,
broadcast_buffers=False,
)
output_dir = cfg.OUTPUT_DIR
model_file_name = cfg.MODEL_FILE_NAME
model_file_path = join(output_dir, model_file_name)
test_gamma = cfg.TEST.GAMMA#1.5
max_epoch = cfg.SOLVER.MAX_EPOCH#25
lamd = {
1: cfg.MODEL.LOSS.LAMBDA1,
2: cfg.MODEL.LOSS.LAMBDA2,
3: cfg.MODEL.LOSS.LAMBDA3,
4: cfg.MODEL.LOSS.LAMBDA4,
}
do_train(
model,
tr_dataloader,
tu_loader,
ts_loader,
res,
optimizer,
scheduler,
lamd,
test_gamma,
device,
max_epoch,
model_file_path,
)
return model
def main():
parser = argparse.ArgumentParser(description="PyTorch Zero-Shot Learning Training")
parser.add_argument('--gpu', type=int, default=3)#2024/3/9添加,用于设置在哪种卡上运行
parser.add_argument(
"--config-file",
default="config/ip102.yaml",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
print(torch.cuda.device_count())
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
torch.cuda.set_device(args.local_rank)
cfg.merge_from_file(args.config_file)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
log_file_name = cfg.LOG_FILE_NAME
log_file_path = join(output_dir, log_file_name)
if is_main_process():
ReDirectSTD(log_file_path, 'stdout', True)
print("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
print(config_str)
print("Running with config:\n{}".format(cfg))
torch.backends.cudnn.benchmark = True
model = train_model(cfg, args.local_rank, args.distributed)
if __name__ == '__main__':
os.environ["CUDA_VISIBLE_DEVICES"] = '1'
main()