-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine_self_training.py
374 lines (304 loc) · 16 KB
/
engine_self_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import math
import sys
from typing import Iterable
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils
from timm.utils import accuracy
def train_one_epoch(model: torch.nn.Module, args, train_config,
data_loader: Iterable, optimizer: torch.optim.Optimizer, amp_autocast,
device: torch.device, epoch: int, loss_scaler,
log_writer=None, lr_scheduler=None, start_steps=None,
lr_schedule_values=None, model_ema=None):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
for step, ((images_weak, _, _), targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
it = start_steps + step
if lr_schedule_values is not None:
for i, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"]
# ramp-up ema decay
model_ema.decay = train_config['model_ema_decay_init'] + (args.model_ema_decay - train_config['model_ema_decay_init']) * min(1, it/train_config['warm_it'])
metric_logger.update(ema_decay=model_ema.decay)
images_weak = images_weak.to(device, non_blocking=True)
# mask = mask.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
with torch.no_grad():
conf_ratio=1
pseudo_label_acc=1
metric_logger.update(conf_ratio=conf_ratio)
metric_logger.update(pseudo_label_acc=pseudo_label_acc)
with amp_autocast():
logits = model(images_weak)
if args.shots > 0 :
loss_st = F.cross_entropy(logits, targets)
# probs = F.softmax(logits,dim=-1)
# probs_all = probs
# # probs_all = utils.all_gather_with_grad(probs)
# probs_batch_avg = probs_all.mean(0) # average prediction probability across all gpus
loss = loss_st
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
optimizer.zero_grad()
if loss_scaler is not None:
grad_norm = loss_scaler(loss, optimizer, clip_grad=None, parameters=model.parameters(), create_graph=False)
loss_scale_value = loss_scaler.state_dict()["scale"]
metric_logger.update(loss_scale=loss_scale_value)
metric_logger.update(grad_norm=grad_norm)
else:
loss.backward(create_graph=False)
optimizer.step()
model_ema.update(model)
torch.cuda.synchronize()
metric_logger.update(loss_st=loss_st.item())
# metric_logger.update(loss_fair=loss_fair.item())
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
metric_logger.update(min_lr=min_lr)
if log_writer is not None:
log_writer.update(loss_st=loss_st.item(), head="train")
# log_writer.update(loss_fair=loss_fair.item(), head="train")
log_writer.update(conf_ratio=conf_ratio, head="train")
log_writer.update(pseudo_label_acc=pseudo_label_acc, head="train")
log_writer.update(lr=max_lr, head="opt")
log_writer.update(min_lr=min_lr, head="opt")
log_writer.set_step()
if lr_scheduler is not None:
lr_scheduler.step_update(start_steps + step)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def train_one_epoch_liftncd(model: torch.nn.Module, args, train_config,
data_loader: Iterable,data_loader_u: Iterable, optimizer: torch.optim.Optimizer, amp_autocast,
device: torch.device, epoch: int, loss_scaler,
log_writer=None, lr_scheduler=None, start_steps=None,
lr_schedule_values=None, model_ema=None,thresholding_module=None):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
data_loader_iter = iter(data_loader)
data_loader_iter_u = iter(data_loader_u)
for step, (idx_u,((images_weak_u, images_strong_s, _), targets_u)) in enumerate(metric_logger.log_every(data_loader_u, print_freq, header)):
try:
(images_weak, _, _), targets = next(data_loader_iter)
except StopIteration:
data_loader_iter = iter(data_loader)
(images_weak, _, _), targets = next(data_loader_iter)
except TypeError:
assert data_loader is None
return None
# assign learning rate for each step
it = start_steps + step # global training iteration
if lr_schedule_values is not None:
for i, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"]
# ramp-up ema decay
model_ema.decay = train_config['model_ema_decay_init'] + (args.model_ema_decay - train_config['model_ema_decay_init']) * min(1, it/train_config['warm_it'])
metric_logger.update(ema_decay=model_ema.decay)
idx_u = idx_u.to(device)
images_weak, images_weak_u, images_strong_s = images_weak.to(device, non_blocking=True), images_weak_u.to(device, non_blocking=True), images_strong_s.to(device, non_blocking=True)
# mask = mask.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
targets_u = targets_u.to(device, non_blocking=True)
num_lb = images_weak.shape[0]
inputs = torch.cat((images_weak, images_strong_s))
with torch.no_grad():
# pseudo-label with ema model
_,probs_ema_new,_ = model_ema.ema(images_weak_u, ncd=True)
# logits_base,logits_new,_ = model(images_weak_u, ncd=True)
probs_ema = F.softmax(probs_ema_new,dim=-1)
score, pseudo_targets = probs_ema.max(-1)
dynamic_threshold = thresholding_module.get_threshold(pseudo_targets)
# conf_mask = score>train_config['conf_threshold']
conf_mask = score > dynamic_threshold
# mask used for updating learning status
selected_mask = (score > train_config['conf_threshold']).long()
thresholding_module.update(idx_u, selected_mask, pseudo_targets)
pseudo_label_acc = (pseudo_targets[conf_mask] == targets_u[conf_mask]).float().mean().item()
conf_ratio = conf_mask.float().sum()/conf_mask.size(0)
metric_logger.update(conf_ratio=conf_ratio)
metric_logger.update(pseudo_label_acc=pseudo_label_acc)
with amp_autocast():
logits_base,logits_new,_ = model(inputs, ncd=True)
# self-training loss
loss_st = F.cross_entropy(logits_base[:num_lb], targets)
loss_u = F.cross_entropy(logits_new[num_lb:][conf_mask], pseudo_targets[conf_mask])
# loss_st = F.cross_entropy(logits[:num_lb][conf_mask], pseudo_targets[conf_mask])
loss = loss_st + loss_u
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
optimizer.zero_grad()
if loss_scaler is not None:
grad_norm = loss_scaler(loss, optimizer, clip_grad=None, parameters=model.parameters(), create_graph=False)
loss_scale_value = loss_scaler.state_dict()["scale"]
metric_logger.update(loss_scale=loss_scale_value)
metric_logger.update(grad_norm=grad_norm)
else:
loss.backward(create_graph=False)
optimizer.step()
model_ema.update(model)
torch.cuda.synchronize()
metric_logger.update(loss_st=loss_st.item())
# metric_logger.update(loss_fair=loss_fair.item())
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
metric_logger.update(min_lr=min_lr)
if log_writer is not None:
log_writer.update(loss_st=loss_st.item(), head="train")
# log_writer.update(loss_fair=loss_fair.item(), head="train")
log_writer.update(conf_ratio=conf_ratio, head="train")
log_writer.update(pseudo_label_acc=pseudo_label_acc, head="train")
log_writer.update(lr=max_lr, head="opt")
log_writer.update(min_lr=min_lr, head="opt")
log_writer.set_step()
if lr_scheduler is not None:
lr_scheduler.step_update(start_steps + step)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device, model_ema=None, args=None):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
model.eval()
if model_ema is not None:
model_ema.ema.eval()
if args.dataset in ['other']:
all_outputs = []
all_ema_outputs = []
all_targets = []
for batch in metric_logger.log_every(data_loader, 10, header):
images = batch[0].to(device, non_blocking=True)
target = batch[-1].to(device, non_blocking=True)
# compute output
output = model(images)
if args.dataset in ['other']:
all_outputs.append(output.cpu())
all_targets.append(target.cpu())
else:
acc = accuracy(output, target)[0]
metric_logger.meters['acc1'].update(acc.item(), n=images.shape[0])
if model_ema is not None:
ema_output = model_ema.ema(images)
if args.dataset in ['other']:
all_ema_outputs.append(ema_output.cpu())
else:
ema_acc1 = accuracy(ema_output, target)[0]
metric_logger.meters['ema_acc1'].update(ema_acc1.item(), n=images.shape[0])
# if args.dataset in ['imagenet', 'sun397']:
if args.dataset in ['other']:
mean_per_class,every_class = utils.mean_per_class(torch.cat(all_outputs), torch.cat(all_targets))
metric_logger.meters['acc1'].update(mean_per_class)
# metric_logger.meters['acc_every'].update(every_class)
if model_ema is not None:
mean_per_class,every_class = utils.mean_per_class(torch.cat(all_ema_outputs), torch.cat(all_targets))
metric_logger.meters['ema_acc1'].update(mean_per_class)
# metric_logger.meters['acc_every'].update(every_class)
print('* Acc@1 {top1.global_avg:.3f}'.format(top1=metric_logger.acc1))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate_ncd(data_loader_base, data_loader_new, model, device, model_ema=None, args=None):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
if model_ema is not None:
model_ema.ema.eval()
if args.dataset in ['imagenet']:
all_outputs = []
all_ema_outputs = []
all_targets = []
for batch in metric_logger.log_every(data_loader_base, 10, header):
images = batch[0].to(device, non_blocking=True)
target = batch[-1].to(device, non_blocking=True)
# compute output
output_base,_,_ = model(images, ncd=True)
if args.dataset in ['imagenet']:
all_outputs.append(output_base.cpu())
all_targets.append(target.cpu())
else:
acc = accuracy(output_base, target)[0]
metric_logger.meters['acc1_base'].update(acc.item(), n=images.shape[0])
if model_ema is not None:
ema_output_base,_,_ = model_ema.ema(images, ncd=True)
# if args.dataset in ['pets', 'caltech101', 'ucf101']:
if args.dataset in ['imagenet']:
all_ema_outputs.append(ema_output_base.cpu())
else:
ema_acc1 = accuracy(ema_output_base, target)[0]
metric_logger.meters['ema_acc1_base'].update(ema_acc1.item(), n=images.shape[0])
if args.dataset in ['imagenet']:
mean_per_class,every_class = utils.mean_per_class(torch.cat(all_outputs), torch.cat(all_targets))
metric_logger.meters['acc1_base'].update(mean_per_class)
# metric_logger.meters['acc_every'].update(every_class)
if model_ema is not None:
mean_per_class,every_class = utils.mean_per_class(torch.cat(all_ema_outputs), torch.cat(all_targets))
metric_logger.meters['ema_acc1_base'].update(mean_per_class)
# metric_logger.meters['acc_every'].update(every_class)
if args.dataset in ['imagenet']:
all_outputs = []
all_ema_outputs = []
all_targets = []
all_ema_outputs = []
all_targets = []
for batch in metric_logger.log_every(data_loader_new, 10, header):
images = batch[0].to(device, non_blocking=True)
target = batch[-1].to(device, non_blocking=True)
# compute output
_,output_new,_ = model(images, ncd=True)
# if args.dataset in ['pets', 'caltech101', 'ucf101']:
if args.dataset in ['imagenet']:
all_outputs.append(output_new.cpu())
all_targets.append(target.cpu())
else:
acc = accuracy(output_new, target)[0]
metric_logger.meters['acc1_new'].update(acc.item(), n=images.shape[0])
if model_ema is not None:
_,ema_output_new,_ = model_ema.ema(images, ncd=True)
# if args.dataset in ['pets', 'caltech101', 'ucf101']:
if args.dataset in ['imagenet']:
all_ema_outputs.append(ema_output_new.cpu())
else:
all_ema_outputs.append(ema_output_new.cpu())
all_targets.append(target.cpu())
ema_acc1 = accuracy(ema_output_new, target)[0]
metric_logger.meters['ema_acc1_new'].update(ema_acc1.item(), n=images.shape[0])
mean_per_class,every_class = utils.mean_per_class(torch.cat(all_ema_outputs), torch.cat(all_targets))
if args.dataset in ['imagenet']:
mean_per_class,every_class = utils.mean_per_class(torch.cat(all_outputs), torch.cat(all_targets))
metric_logger.meters['acc1_new'].update(mean_per_class)
if model_ema is not None:
mean_per_class,every_class = utils.mean_per_class(torch.cat(all_ema_outputs), torch.cat(all_targets))
metric_logger.meters['ema_acc1_new'].update(mean_per_class)
# metric_logger.meters['acc_every'].update(every_class)
print('* Acc_base@1 {top1.global_avg:.3f}'.format(top1=metric_logger.acc1_base))
print('* Acc_new@1 {top1.global_avg:.3f}'.format(top1=metric_logger.acc1_new))
print(mean_per_class)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}