forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsum-of-subsequence-widths.py
41 lines (39 loc) · 1.06 KB
/
sum-of-subsequence-widths.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Time: O(n)
# Spce: O(1)
# Given an array of integers A,
# consider all non-empty subsequences of A.
# For any sequence S,
# let the width of S be the difference between
# the maximum and minimum element of S.
# Return the sum of the widths of all subsequences of A.
# As the answer may be very large,
# return the answer modulo 10^9 + 7.
#
# Example 1:
#
# Input: [2,1,3]
# Output: 6
# Explanation:
# Subsequences are [1], [2], [3], [2,1], [2,3], [1,3], [2,1,3].
# The corresponding widths are 0, 0, 0, 1, 1, 2, 2.
# The sum of these widths is 6.
#
# Note:
# - 1 <= A.length <= 20000
# - 1 <= A[i] <= 20000
class Solution(object):
def sumSubseqWidths(self, A):
"""
:type A: List[int]
:rtype: int
"""
M = 10**9+7
# sum(A[i] * (2^i - 2^(len(A)-1-i))), i = 0..len(A)-1
# <=>
# sum(((A[i] - A[len(A)-1-i]) * 2^i), i = 0..len(A)-1
result, c = 0, 1
A.sort()
for i in xrange(len(A)):
result = (result + (A[i]-A[len(A)-1-i])*c % M) % M
c = (c<<1) % M
return result