forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcount-different-palindromic-subsequences.py
69 lines (63 loc) · 2.14 KB
/
count-different-palindromic-subsequences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Time: O(n^2)
# Space: O(n^2)
# Given a string S, find the number of different non-empty palindromic subsequences in S,
# and return that number modulo 10^9 + 7.
#
# A subsequence of a string S is obtained by deleting 0 or more characters from S.
#
# A sequence is palindromic if it is equal to the sequence reversed.
#
# Two sequences A_1, A_2, ... and B_1, B_2, ... are different if there is some i for which A_i != B_i.
#
# Example 1:
# Input:
# S = 'bccb'
# Output: 6
# Explanation:
# The 6 different non-empty palindromic subsequences are 'b', 'c', 'bb', 'cc', 'bcb', 'bccb'.
# Note that 'bcb' is counted only once, even though it occurs twice.
#
# Example 2:
# Input:
# S = 'abcdabcdabcdabcdabcdabcdabcdabcddcbadcbadcbadcbadcbadcbadcbadcba'
# Output: 104860361
#
# Explanation:
# There are 3104860382 different non-empty palindromic subsequences, which is 104860361 modulo 10^9 + 7.
# Note:
# - The length of S will be in the range [1, 1000].
# - Each character S[i] will be in the set {'a', 'b', 'c', 'd'}.
class Solution(object):
def countPalindromicSubsequences(self, S):
"""
:type S: str
:rtype: int
"""
def dp(i, j, prv, nxt, lookup):
if lookup[i][j] is not None:
return lookup[i][j]
result = 1
if i <= j:
for x in xrange(4):
i0 = nxt[i][x]
j0 = prv[j][x]
if i <= i0 <= j:
result = (result + 1) % P
if None < i0 < j0:
result = (result + dp(i0+1, j0-1, prv, nxt, lookup)) % P
result %= P
lookup[i][j] = result
return result
prv = [None] * len(S)
nxt = [None] * len(S)
last = [None] * 4
for i in xrange(len(S)):
last[ord(S[i])-ord('a')] = i
prv[i] = tuple(last)
last = [None] * 4
for i in reversed(xrange(len(S))):
last[ord(S[i])-ord('a')] = i
nxt[i] = tuple(last)
P = 10**9 + 7
lookup = [[None] * len(S) for _ in xrange(len(S))]
return dp(0, len(S)-1, prv, nxt, lookup) - 1